3 Biotech

, 9:441 | Cite as

The draft genome sequence of Meyerozyma guilliermondii strain YLG18, a yeast capable of producing and tolerating high concentration of 2-phenylethanol

  • Wei Yan
  • Shangjie Zhang
  • Min Wu
  • Wenming Zhang
  • Jie Zhou
  • Weiliang Dong
  • Xiujuan Qian
  • Min JiangEmail author
  • Fengxue XinEmail author
Genome Reports


The draft genome of a wild-type Meyerozyma guilliermondii strain YLG18, which could convert l-phenylalanine (l-phe) to 2-phenylethanol (2-PE) and tolerate high concentration of 2-PE was sequenced and analyzed. 18S rDNA analysis indicated that strain YLG18 is closely related to M. guilliermondii. The assembled draft genome of strain YLG18 is 12.8 Mb, containing 5275 encoded protein sequences with G + C content of 43.75%. Among these annotated genes, two aminotransferases, one phenylpyruvate decarboxylase and two bifunctional alcohol dehydrogenases (adh) play key roles in the achievement of 2-PE production from l-phe via Ehrlich pathway. In addition, membrane protein insertase (YidC), heat shock protein (Hsp90) and chaperons (SGT1) were identified, which may contribute to the increased tolerance to 2-PE.


Draft genome Meyerozyma guilliermondii 2-Phenylethanol Ehrlich pathway Tolerance 



This work was supported by the National Key Research and Development Program of China (2018YFA0902200), the Jiangsu Province Natural Science Foundation for Youths (BK20170993), the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, the National Natural Science Foundation of China (Nos. 21706125, 21978130), Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals Foundation (JSBEM201908), and the China Postdoctoral Innovative Talents Support Program (BX20180140).


  1. Batista TM, Moreira RG, Hilário Heron O et al (2017) Draft genome sequence of Sugiyamaella xylanicola UFMG-CM-Y1884T, a xylan-degrading yeast species isolated from rotting wood samples in Brazil. Genomics Data 11:120–121CrossRefGoogle Scholar
  2. Celinska E, Kubiak P, Białas W, Dziadas M, Grajek W (2013) Yarrowia lipolytica: the novel and promising 2-phenylethanol producer. J Ind Microbiol Biotechnol 40:389–392CrossRefGoogle Scholar
  3. Chreptowicz K, Sternicka MK, Kowalska PD, Mierzejewska J (2018) Screening of yeasts for the production of 2-phenylethanol (rose aroma) in organic waste-based media. Lett Appl Microbiol 66(2):153–160CrossRefGoogle Scholar
  4. Dorothee K, Andreas K (2018) YidC-mediated membrane insertion. FEMS Microbiol Lett 365(12):1Google Scholar
  5. Eshkol N, Sendovski M, Bahalul M, Katz-Ezov T, Kashil Y, Fishman A (2008) Production of 2-phenylethanol from l-phenylalanine by a stress tolerant Saccharomyces cerevisiae strain. J Appl Microbiol 106(2):534–542CrossRefGoogle Scholar
  6. Etschmann M, Bluemke W, Sell D, Schrader J (2002) Biotechnological production of 2-phenylethanol. Appl Microbiol Biotechnol 59:1–8CrossRefGoogle Scholar
  7. Fabre CE, Blanc PJ, Goma G (1996) Production of benzaldehyde by several strains of Ischnoderma benzoinum. Sci Des Aliments 16(1):61–68Google Scholar
  8. Guo DY, Zhang LH, Kong SJ, Liu ZJ, Li X, Pan H (2018) Metabolic engineering of Escherichia coli for production of 2-phenylethanol and 2-phenylethyl acetate from glucose. J Agric Food Chem 66(23):5886–5891CrossRefGoogle Scholar
  9. Hirata H, Ohnishi T, Ishida H, Tomida K, Sakai M, Hara M, Watanabe N (2012) Functional characterization of aromatic amino acid aminotransferase involved in 2-phenylethanol biosynthesis in isolated rose petal protoplasts. J Plant Physiol 169(5):444–451CrossRefGoogle Scholar
  10. Hua D, Xu P (2011) Recent advances in biotechnological production of 2-phenylethanol. Biotechnol Adv 29(6):654–660CrossRefGoogle Scholar
  11. Ingram LO, Buttke TM (1985) Effects of alcohols on micro-organisms. Adv Microb Physiol 25:253–300CrossRefGoogle Scholar
  12. Jin DF, Gu BT, Xiong DW, Huang GC, Huang XP, Liu L, Xiao J (2018) A transcriptomic analysis of saccharomyces cerevisiae under the stress of 2-phenylethanol. Curr Microbiol 75:1068–1076CrossRefGoogle Scholar
  13. Kang Z, Zhang CZ, Du GC, Chen J (2014) Metabolic engineering of Escherichia coli for production of 2-phenylethanol from renewable glucose. Appl Biochem Biotechnol 172(4):2012–2021CrossRefGoogle Scholar
  14. Karaoglan M, Karaoglan FE, Inan M (2016) Functional analysis of alcohol dehydrogenase (ADH) genes in Pichia pastoris. Biotechnol Lett 38(3):463–469CrossRefGoogle Scholar
  15. Kim B, Cho BR, Hahn JS (2014) Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway. Biotechnol Bioeng 111:115–125CrossRefGoogle Scholar
  16. Koma D, Yamanaka H, Moriyoshi K, Ohmoto T, Sakai K (2012) Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway. Appl Environ Microbiol 78(17):6203–6216CrossRefGoogle Scholar
  17. Konturek PC, Brzozowski T, Konturek SJ, Pajdo R, Stachura J, Hahn EG (1998) Adaptation to alcohol is associated with overexpression of heat shock proteins (HSP). Gastroenterology 114(1):A186Google Scholar
  18. Lomascolo A, Lesage-Meessen L, Haon M, Navarro D, Antona C, Faulds C, Marcel A (2001) Evaluation of the potential of Aspergillus niger species for the bioconversion of l-phenylalanine into 2-phenylethanol. World J Microbiol Biotechnol 17:99–102CrossRefGoogle Scholar
  19. Lucchini JJ, Corre J, Cremieux A (1990) Antibacterial activity of phenolic compounds and aromatic alcohols. Res Microbiol 141(4):499–510CrossRefGoogle Scholar
  20. Masuo S, Osada L, Zhou SM, Fujita T, Takaya N (2015) Aspergillus oryzae pathways that convert phenylalanine into the flavor volatile 2-phenylethanol. Fungal Genet Biol 77:22–30CrossRefGoogle Scholar
  21. Patetko A, Silins R, Scherbaka R, Martinova J, Vigants A (2016) 2-Phenylethanol production by Kluyveromyces marxianus on glucose and lactose substrates. J Biotechnol 231:S62–S63CrossRefGoogle Scholar
  22. Qian XJ, Yan W, Zhang WM, Dong WL, Ma JF, Ochsenreither K, Jiang M, Xin FX (2018) Current status and perspectives of 2-phenylethanol production through biological processes. Crit Rev Biotechnol 39(2):235–248CrossRefGoogle Scholar
  23. Ramírez-Castrillón M, Jaramillo-Garcia VP, Rosa PD, Landell MF, Duong V, Fabricio MF, Ayub MAZ, Robert V, Henriques JAP, Valente P (2017) The oleaginous yeast Meyerozyma guilliermondii BI281A as a new potential biodiesel feedstock: selection and lipid production optimization. Front Microbiol 8:1776CrossRefGoogle Scholar
  24. Schrader J, Etschmann MMW, Sell D, Hilmer JM, Rabenhorst J (2004) Applied biocatalysis for the synthesis of natural flavour compounds current industrial processes and future prospects. Biotechnol Lett 26(6):463–472CrossRefGoogle Scholar
  25. Shanmugam S, Sun CR, Zeng XM, Wu YR (2018) High-efficient production of biobutanol by a novel Clostridium sp strain WST with uncontrolled pH strategy. Biores Technol 256:543–547CrossRefGoogle Scholar
  26. Shen L, Nishimura Y, Matsuda F, Ishii J, Kondo A (2016) Overexpressing enzymes of the Ehrlich pathway and deleting genes of the competing pathway in Saccharomyces cerevisiae for increasing 2-phenylethanol production from glucose. J Biosci Bioeng 122(1):34–39CrossRefGoogle Scholar
  27. Welker S, Rudolph B, Frenzel E, Hagn F, Liebisch G, Schmitz G, Scheuring J, Kerth A, Blume A, Weinkauf S, Haslbeck M, Kessler H, Buchner J (2010) Hsp12 is an intrinsically unstructured stress protein that folds upon membrane association and modulates membrane function. Mol Cell 39(4):507–520CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingPeople’s Republic of China
  2. 2.Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech UniversityNanjingPeople’s Republic of China

Personalised recommendations