Advertisement

3 Biotech

, 9:378 | Cite as

Functional annotation and identification of MADS-box transcription factors related to tuber dormancy in Helianthus tuberosus L.

  • Shipeng Yang
  • Jieming Gao
  • Lihui Wang
  • Xuemei Sun
  • Panpan Xu
  • Liwen ZhangEmail author
  • Qiwen ZhongEmail author
Original Article

Abstract

Dormancy-associated MADS-box (DAM) genes play an important role in plant dormancy and release phases. Little is known about the dormancy characteristics of Jerusalem artichoke tubers. Using bioinformatics, we identified and annotated 23 MADS-box gene sequences from the genome of the Jerusalem artichoke and we analyzed the differential expression of these genes at different developmental stages of tuber dormancy. The results show that all 23 genes encode basic proteins and most of the genes of the same subgroup have similar pI values. MADS-box genes from the Jerusalem artichoke and from other closely related species were divided into ten categories using phylogenetic analysis software. Based on the amino acid sequence of the MADS-domain proteins, ten highly conserved motifs were identified. Gene ontology annotation, InterProScan protein function prediction, and RT-PCR analysis showed that ten MADS-box genes play important roles in the dormancy process of Jerusalem artichoke tubers. Our work lays a foundation for further study of the role of MADS-box genes in the dormancy of the Jerusalem artichoke and other tuber crops.

Keywords

Dormancy MADS-box transcription factors Gene expression Helianthus tuberosus L. 

Notes

Funding

Funding was provided by Qinghai Academy of Agriculture and Forestry Sciences Innovation Fund (Grant number: 2017-NKY-04), Natural Science Foundation of China (Grant number: 31660588; 31660569; 31760600), The Fundamental Research Program of Qinghai (Grant number: 2017-ZJ-Y18), The Project of Qinghai Science & Technology Department (Grant number: 2016-ZJ-Y01), The Open Project of State Key Laboratory of Plateau Ecology and Agriculture of Qinghai University (Grant number: 2016-ZZ-06).

Compliance with ethical standards

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

References

  1. Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF (2000) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24(4):457–466PubMedCrossRefGoogle Scholar
  2. Bielenberg DG, Wang YE, Li Z, Zhebentyayeva T, Fan S, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4(3):495–507CrossRefGoogle Scholar
  3. Borgmann K, Sinha P, Frommer WB (1994) Changes in the two-dimensional protein pattern and in gene expression during the sink-to-source transition of potato tubers. Plant Sci 99(1):97–108CrossRefGoogle Scholar
  4. Campbell M, Segear E, Beers L, Knauber D, Suttle J (2008) Dormancy in potato tuber meristems: chemically induced cessation in dormancy matches the natural process based on transcript profiles. Funct Integr Genomics 8(4):317–328PubMedCrossRefGoogle Scholar
  5. Can Q, Ferrándiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125(8):1509–1517Google Scholar
  6. Cao J, Shi F (2012) Dynamics of arginase gene evolution in metazoans. J Biomol Struct Dyn 30(4):407–418PubMedCrossRefGoogle Scholar
  7. Conesa A, Götz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008:1–12CrossRefGoogle Scholar
  8. Danilcenko H, Jariene E, Gajewski M, Sawicka B, Kulaitiene J, Cerniauskiene J (2013) Changes in amino acids content in tubers of Jerusalem artichoke (Helianthus tuberosus L.) cultivars during storage. Acta Sci Pol Hortoru 12(2):97–105Google Scholar
  9. Díaz-Riquelme J, Lijavetzky D, Martínez-Zapater JM, Carmona MJ (2009) Genome-wide analysis of MIKCC-type MADS box genes in grapevine. Plant Physiol 149(1):354–369PubMedPubMedCentralCrossRefGoogle Scholar
  10. Filep R, Pal RW, Balázs VL, Mayer M, Nagy DU, Cook BJ, Farkas Á (2016) Can seasonal dynamics of allelochemicals play a role in plant invasions? A case study with Helianthus tuberosus L. Plant Ecol 217(12):1489–1501CrossRefGoogle Scholar
  11. Fischer A, Baum N, Saedler H, Theiβen G (1995) Chromosomal mapping of the MADS-box multigene family in Zea mays reveals dispersed distribution of allelic genes as well as transposed copies. Nucleic Acids Res 23(11):1901–1911PubMedPubMedCentralCrossRefGoogle Scholar
  12. Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe WJ (2012) Molecular mechanisms of seed dormancy. Plant Cell Environ 35(10):1769–1786PubMedCrossRefGoogle Scholar
  13. Gu Q, Ferrándiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125(8):1509–1517PubMedGoogle Scholar
  14. Horvath DP (2015) Dormancy-associated MADS-BOX genes: a review. In: Anderson J (ed) Advances in plant dormancy. Springer, Cham, pp 137–146Google Scholar
  15. Horvath DP, Chao WS, Suttle JC, Thimmapuram J, Anderson JV (2008) Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge (Euphorbia esula L.). BMC Genomics 9(1):536PubMedPubMedCentralCrossRefGoogle Scholar
  16. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, Bork P (2017) Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 34(8):2115–2122PubMedPubMedCentralCrossRefGoogle Scholar
  17. Jiménez S, Reighard G, Bielenberg D (2010) Gene expression of DAM5 and DAM6 is suppressed by chilling temperatures and inversely correlated with bud break rate. Plant Mol Biol 73(1–2):157–167PubMedCrossRefGoogle Scholar
  18. Jing W, Xiaoming Z, Guohua Y, Yu Z, Kaichun Z (2013) Over-expression of the PaAP1 gene from sweet cherry (Prunus avium L ) causes early flowering in Arabidopsis thaliana. J Plant Physiol 170(3):315–320CrossRefGoogle Scholar
  19. Kaufmann K, Melzer R, Theißen G (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347(2):183–198PubMedCrossRefGoogle Scholar
  20. Kays SJ (2007) Biology and chemistry of Jerusalem artichoke: Helianthus Tuberosus L. J Agric Food Inf 10(4):352–353Google Scholar
  21. Kofuji R, Sumikawa N, Yamasaki M, Kondo K, Ueda K, Ito M, Hasebe M (2003) Evolution and divergence of the MADS-box gene family based on genome-wide expression analyses. Mol Biol Evol 20(12):1963–1977PubMedCrossRefGoogle Scholar
  22. Krijthe N (1962) Observations on the sprouting of seed potatoes. Eur Potato J 5(4):316–333CrossRefGoogle Scholar
  23. Lachman J, Kays SJ, Nottingham SF (2008) Biology and chemistry of Jerusalem artichoke Helianthus tuberosus L. Biol Plant 52(3):15–25CrossRefGoogle Scholar
  24. Lalusin AG, Nishita K, Kim S-H, Ohta M, Fujimura T (2006) A new MADS-box gene (IbMADS10) from sweet potato (Ipomoea batatas (L.) Lam) is involved in the accumulation of anthocyanin. Mol Genet Genomics 275(1):44–54.  https://doi.org/10.1007/s00438-005-0080-x CrossRefPubMedGoogle Scholar
  25. Leake JR (1994) Tansley Review No. 69. The biology of mycoheterotrophic (saprotrophic) plants. New Phytol 127(171):216Google Scholar
  26. Leida C, Terol J, Martí G, Agustí M, Llácer G, Badenes ML, Ríos G (2010) Identification of genes associated with bud dormancy release in Prunus persica by suppression subtractive hybridization. Tree Physiol 30(5):655–666PubMedCrossRefGoogle Scholar
  27. Leida C, Conesa A, Llácer G, Badenes ML, Ríos G (2012) Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytol 193(1):67–80PubMedCrossRefGoogle Scholar
  28. Lesur I, Bechade A, Lalanne C, Klopp C, Noirot C, Leplé JC, Kremer A, Plomion C, Le Provost G (2015) A unigene set for European beech (Fagus sylvatica L.) and its use to decipher the molecular mechanisms involved in dormancy regulation. Mol Ecol Res 15(5):1192–1204CrossRefGoogle Scholar
  29. Li Z, Reighard GL, Abbott AG, Bielenberg DG (2009) Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. J Exp Bot 60(12):3521–3530PubMedPubMedCentralCrossRefGoogle Scholar
  30. Li L, Shao T, Yang H, Chen M, Gao X, Long X, Shao H, Liu Z, Rengel Z (2017) The endogenous plant hormones and ratios regulate sugar and dry matter accumulation in Jerusalem artichoke in salt-soil. Sci Total Environ 578:40–46PubMedCrossRefGoogle Scholar
  31. Liljegren SJ, Ferrándiz C, Alvarez-Buylla ER, Pelaz S, Yanofsky MF (1998) Arabidopsis MADS-box genes involved in fruit dehiscence. Flower Newslett 25:9–19Google Scholar
  32. Liu G, Li W, Zheng P, Xu T, Chen L, Liu D, Hussain S, Teng Y (2012) Transcriptomic analysis of ‘Suli’ pear (Pyrus pyrifolia white pear group) buds during the dormancy by RNA-Seq. BMC Genomics 13(1):700PubMedPubMedCentralCrossRefGoogle Scholar
  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT method. Methods 25(4):402–408PubMedGoogle Scholar
  34. Ma H (1994) The unfolding drama of flower development: recent results from genetic and molecular analyses. Genes Dev 8(7):745–756PubMedCrossRefGoogle Scholar
  35. McWilliam H, Valentin F, Wallace I, Wilm A, Lopez R, Thompson J, Gibson T, Higgins D (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  36. Min C, Xiao L, Lei H, Sun M, Li L, Chen X, Gao D, Ling L (2017) Genome-wide analysis of Dof family genes and their expression during bud dormancy in peach (Prunus persica). Sci Hortic 214:18–26CrossRefGoogle Scholar
  37. Niu Q, Li J, Cai D, Qian M, Jia H, Bai S, Hussain S, Liu G, Teng Y, Zheng X (2016) Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear (Pyrus pyrifolia white pear group) flower bud. J Exp Bot 67(1):239–257PubMedCrossRefGoogle Scholar
  38. Par̆enicová L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15(7):1538–1551PubMedPubMedCentralCrossRefGoogle Scholar
  39. Perry SE, Lehti MD, Fernandez DE (1999) The MADS-domain protein AGAMOUS-like 15 accumulates in embryonic tissues with diverse origins. Plant Physiol 120(1):121–130PubMedPubMedCentralCrossRefGoogle Scholar
  40. Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12(5):217–223PubMedCrossRefGoogle Scholar
  41. Rutherford PP, Flood AE (1971) Seasonal changes in the invertase and hydrolase activities of Jerusalem artichoke tubers. Phytochemistry 10(5):953–956CrossRefGoogle Scholar
  42. Ryuta S, Hisayo Y, Tomomi O, Hiroaki J, Yuto K, Takashi A, Ryutaro T (2011) Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot. Plant Physiol 157(1):485–497CrossRefGoogle Scholar
  43. Saengkanuk A, Nuchadomrong S, Jogloy S, Patanothai A, Srijaranai S (2011) A simplified spectrophotometric method for the determination of inulin in Jerusalem artichoke (Helianthus tuberosus L.) tubers. Eur Food Res Technol 233(4):609.  https://doi.org/10.1007/s00217-011-1552-3 CrossRefGoogle Scholar
  44. Saengthongpinit W, Sajjaanantakul T (2005) Influence of harvest time and storage temperature on characteristics of inulin from Jerusalem artichoke (Helianthus tuberosus L.) tubers. Postharvest Biol Technol 37(1):93–100CrossRefGoogle Scholar
  45. Shu Y, Yu D, Wang D, Guo D, Guo C (2013) Genome-wide survey and expression analysis of the MADS-box gene family in soybean. Mol Biol Rep 40(6):3901–3911PubMedCrossRefGoogle Scholar
  46. Ubi BE, Sakamoto D, Ban Y, Shimada T, Ito A, Nakajima I, Takemura Y, Tamura F, Saito T, Moriguchi T (2010) Molecular cloning of dormancy-associated MADS-box gene homologs and their characterization during seasonal endodormancy transitional phases of Japanese pear. J Am Soc Hortic Sci 135(2):174–182CrossRefGoogle Scholar
  47. Watson A, Renney A (1974) The biology of Canadian weeds.: 6. Centaurea diffusa and C. maculosa. Can J Plant Sci 54(4):687–701CrossRefGoogle Scholar
  48. Weigel D (1995) The genetics of flower development: from floral induction to ovule morphogenesis. Annu Rev Genet 29(1):19–39PubMedCrossRefGoogle Scholar
  49. Wu R-M, Walton EF, Richardson AC, Wood M, Hellens RP, Varkonyi-Gasic E (2011) Conservation and divergence of four kiwifruit SVP-like MADS-box genes suggest distinct roles in kiwifruit bud dormancy and flowering. J Exp Bot 63(2):797–807PubMedPubMedCentralCrossRefGoogle Scholar
  50. Xiaoxia Z, Qingheng W, Yu J, Ronglian H, Yuewen D, Huan W, Xiaodong D (2012) Identification of genes potentially related to biomineralization and immunity by transcriptome analysis of pearl sac in pearl oyster Pinctada martensii. Mar Biotechnol 14(6):730–739CrossRefGoogle Scholar
  51. Xu Z, Zhang Q, Sun L, Du D, Cheng T, Pan H, Yang W, Wang J (2014) Genome-wide identification, characterisation and expression analysis of the MADS-box gene family in Prunus mume. Mol Genet Genomics 289(5):903–920PubMedCrossRefGoogle Scholar
  52. Yamane H, Kashiwa Y, Ooka T, Tao R, Yonemori K (2008) Suppression subtractive hybridization and differential screening reveals endodormancy-associated expression of an SVP/AGL24-type MADS-box gene in lateral vegetative buds of Japanese apricot. J Am Soc Hortic Sci 133(5):708–716CrossRefGoogle Scholar
  53. Yamane H, Ooka T, Jotatsu H, Hosaka Y, Sasaki R, Tao R (2011) Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment. J Exp Bot 62(10):3481–3488PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.Qinghai Key Laboratory of Vegetable Genetics and PhysiologyAcademy of Agriculture and Forestry Sciences of Qinghai University (Qinghai Academy of Agriculture and Forestry Sciences)XiningChina
  2. 2.Qinghai UniversityXiningChina
  3. 3.Shanghai Biochip Co., Ltd. & National Engineering Center for Biochip at ShanghaiShanghaiChina

Personalised recommendations