Advertisement

3 Biotech

, 9:333 | Cite as

Prospects of genomic resources available at the global databases for the flora of United Arab Emirates

  • Rahul A. JamdadeEmail author
  • Tamer Mahmoud
  • Sanjay Gairola
Original Article
  • 4 Downloads

Abstract

This article emphasizes available genomic resources at the global databases National Center for Biotechnology Information (NCBI) GenBank, Gramene and Phytozome for the selected 378 plant taxa of the United Arab Emirates (UAE). Germplasm of these species was collected and banked at the Sharjah Seed Bank and Herbarium (SSBH) along with their related information on habit, habitat and occurrence. The occurrence statistics exhibits almost 19.84% species under rare-to-very rare category, the GenBank search statistics for this category indicates 17.72% species as studied and 2.11% as not studied. Overall, from the global search statistics for 378 plant species, it seems that about 40 (10.58%) species remained unstudied. Most of the unstudied species were herbaceous plants belonging to the mountainous habitat. Moreover, full genomes were recorded for 7 species at NCBI GenBank, 2 species at Phytozome and 1 species at Gramene database. The local search statistics (for UAE) exhibits about 10.58% of the flora that still remained unstudied and only 11 (2.90%) of the recorded species were having genomic information at NCBI GenBank. It is necessary to prioritize studies on such species that could provide valuable insight on their genetic composition in order to understand their adaptation to the natural environment. At present, the SSBH is cataloguing UAE’s flora using core barcode and assisted markers that could provide a robust DNA barcode library for native plants of UAE. Our study appeals researchers to recognize and prioritize the species that need attention to enrich their genomic resources at the global databases by supporting nucleotide libraries with their conspecifics. At present, genomic resources for UAE plant taxa are limited, but with the advent of low-cost sequencing technologies these resources would flourish in the near future. Nevertheless, the information generated through genomic studies could be utilized for conservation and management of threatened and endangered plant species, Crop Wild Relatives and medicinal plants. We hope this article will promote interest in conducting additional studies in genomics of desert plants by encouraging researchers to participate in this emerging field.

Keywords

Genomic resources Global databases UAE plants Nucleotide libraries DNA barcoding 

Notes

Acknowledgements

The authors thank Dr. Amr Abdel-Hamid, director general of Sharjah Research Academy for the encouragement and support.

Author contributions

RJ, TM and SG conceived the idea, designed the outlines and conceptualized the overall structure. RJ designed the query for surveying NCBI Genbank, RJ and TM analyzed the data and prepared figures and tables. RJ, TM and SG drafted the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interests.

Supplementary material

13205_2019_1855_MOESM1_ESM.docx (98 kb)
Supplementary material 1 (DOCX 97 kb)

References

  1. Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Holko M, Ayanbule O, Yefanov A, Soboleva A (2011) NCBI GEO: archive for functional genomics data sets 10 years on. Nucl Acids Res 39(Database):D1005–D1010.  https://doi.org/10.1093/nar/gkq1184 CrossRefPubMedGoogle Scholar
  2. Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW (2012) GenBank. Nucl Acids Res 40(D1):D48–D53.  https://doi.org/10.1093/nar/gkr1202 CrossRefPubMedGoogle Scholar
  3. Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, Melake-Berhan A, Jones KM, Redman J, Chen G, Cahoon EB, Gedil M, Stanke M, Haas BJ, Wortman JR, Fraser-Liggett CM, Ravel J, Rabinowicz PD (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28(9):951–956.  https://doi.org/10.1038/nbt.1674 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cochrane G, Karsch-Mizrachi I, Takagi T, Sequence Database Collaboration IN (2016) The international nucleotide sequence database collaboration. Nucl Acids Res 44(D1):D48–D50.  https://doi.org/10.1093/nar/gkv1323 CrossRefPubMedGoogle Scholar
  5. de Vere N, Rich TCG, Ford CR, Trinder SA, Long C, Moore CW, Satterthwaite D, Davies H, Allainguillaume J, Ronca S, Tatarinova T, Garbett H, Walker K, Wilkinson MJ (2012) DNA barcoding the native flowering plants and conifers of wales. PLoS One 7(6):e37945.  https://doi.org/10.1371/journal.pone.0037945 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Draper J, Mur LA, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, Routledge AP (2001) Brachypodium distachyon: a new model system for functional genomics in grasses. Plant Physiol 127(4):1539–1555CrossRefGoogle Scholar
  7. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucl Acids Res 30(1):207–210.  https://doi.org/10.1093/NAR/30.1.207 CrossRefPubMedGoogle Scholar
  8. Enan M, Palakkott A, Ksiksi T (2017) DNA barcoding of selected UAE medicinal plant species: a comparative assessment of herbarium and fresh samples. Physiol Mol Biol Plants 23(1):221–227.  https://doi.org/10.1007/s12298-016-0412-9 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Feau N, Vialle A, Allaire M, Maier W, Hamelin RC (2011) DNA barcoding in the rust genus Chrysomyxa and its implications for the phylogeny of the genus. Mycologia 103(6):1250–1266.  https://doi.org/10.3852/10-426 CrossRefPubMedGoogle Scholar
  10. Flavell R (2009) Role of Model Plant Species. In: Gustafson J, Langridge P, Somers D (eds) Plant Genomics. Methods in Molecular Biology™ (Methods and Protocols), vol 513. Humana Press.  https://doi.org/10.1007/978-1-59745-427-8_1 Google Scholar
  11. Gairola S, Mahmoud T, Shabana H, El-Keblawy A (2016) Growing knowledge about the floral diversity of United Arab Emirates: new additions and conservation through seed banking. Tribulus 24:136–143Google Scholar
  12. Gemund C, Ramu C, Altenberg-Greulich B, Gibson TJ (2001) Gene2EST: a BLAST2 server for searching expressed sequence tag (EST) databases with eukaryotic gene-sized queries. Nucl Acids Res 29(6):1272–1277.  https://doi.org/10.1093/nar/29.6.1272 CrossRefPubMedGoogle Scholar
  13. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40(Database issue):D1178–D1186.  https://doi.org/10.1093/nar/gkr944 CrossRefGoogle Scholar
  14. Gupta P, Naithani S, Tello-Ruiz MK, Chougule K, D’Eustachio P, Fabregat A et al (2016) Gramene Database: Navigating PlantComparative Genomics Resources. Curr Plant Biol 7–8:10–15.  https://doi.org/10.1016/j.cpb.2016.12.005 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hollingsworth PM, Forrest LL, Spouge JL, Hajibabaei M, Ratnasingham S, van der Bank M, Chase MW, Cowan RS, Erickson DL, Fazekas AJ, Graham SW, James KE, Kim K-J, Kress WJ, Schneider H, van AlphenStahl J, Barrett SCH, van den Berg C, Bogarin D, Burgess KS, Cameron KM, Carine M, Chacón J, Clark A, Clarkson JJ, Conrad F, Devey DS, Ford CS, Hedderson TAJ, Hollingsworth ML, Husband BC, Kelly LJ, Kesanakurti PR, Kim JS, Kim Y-D, Lahaye R, Lee H-L, Long DG, Madriñán S, Maurin O, Meusnier I, Newmaster SG, Park C-W, Percy DM, Petersen G, Richardson JE, Salazar GA, Savolainen V, Seberg O, Wilkinson MJ, Yi D-K, Little DP, CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci 106(31):12794–12797CrossRefGoogle Scholar
  16. Hrdlickova R, Toloue M, Tian B (2017) RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA.  https://doi.org/10.1002/WRNA.1364 CrossRefPubMedGoogle Scholar
  17. Joly S, Davies TJ, Archambault A, Bruneau A, Derry A, Kembel SW, Peres‐Neto P, Vamosi J, Wheeler TA (2014) Ecology in the age of DNA barcoding: the resource, the promise and the challenges ahead. Mol Ecol Resour 14(2):221–232.  https://doi.org/10.1111/1755-0998.12173 CrossRefPubMedGoogle Scholar
  18. Jongbloed M, Feulner G, Böer B, Western AR (2003) The comprehensive guide to the wild flowers of the United Arab Emirates. Environmental Research and Wildlife Development Agency. Retrieved from https://books.google.ae/books?id=IYklAQAAMAAJ
  19. Karim FM, Fawzi N (2007) Flora of the United Arab Emirates. UAE University Publication, Al-AinGoogle Scholar
  20. Karsch-Mizrachi I, Takagi T, Cochrane G, Collaboration INSD (2018) The international nucleotide sequence database collaboration. Nucl Acids Res 46(D1):D48–D51.  https://doi.org/10.1093/nar/gkx1097 CrossRefPubMedGoogle Scholar
  21. Kawanabe T, Nukii H, Furihata HY, Yoshida T, Kawabe A (2018) The complete chloroplast genome of Sisymbrium irio. Mitochondrial DNA Part B 3(2):488–489.  https://doi.org/10.1080/23802359.2018.1464412 CrossRefGoogle Scholar
  22. Kress WJ, García-Robledo C, Uriarte M, Erickson DL (2015) DNA barcodes for ecology, evolution, and conservation. Trends Ecol Evol 30(1):25–35.  https://doi.org/10.1016/j.tree.2014.10.008 CrossRefPubMedGoogle Scholar
  23. Leinonen R, Sugawara H, Shumway M (2011) The sequence read archive. Nucl Acids Res 39(Database):D19–D21.  https://doi.org/10.1093/nar/gkq1019 CrossRefPubMedGoogle Scholar
  24. Li F-W, Kuo L-Y, Rothfels CJ, Ebihara A, Chiou W-L, Windham MD, Pryer KM (2011) rbcL and matK Earn two thumbs up as the core DNA barcode for ferns. PLoS One 6(10):e26597.  https://doi.org/10.1371/journal.pone.0026597 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Maloukh L, Kumarappan A, Jarrar M, Salehi J, El-Wakil H, Rajya Lakshmi TV (2017) Discriminatory power of rbcL barcode locus for authentication of some of United Arab Emirates (UAE) native plants. 3 Biotech 7(2):144.  https://doi.org/10.1007/s13205-017-0746-1 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Meier R, Shiyang K, Vaidya G, Ng PKL (2006) DNA barcoding and taxonomy in diptera: a tale of high intraspecific variability and low identification success. Syst Biol 55(5):715–728.  https://doi.org/10.1080/10635150600969864 CrossRefPubMedGoogle Scholar
  27. Metzker ML (2010) Sequencing technologies: the next generation. Nat Rev Genet 11(1):31–46.  https://doi.org/10.1038/nrg2626 CrossRefPubMedGoogle Scholar
  28. Miller AG, Cope TA, Cope TA, Nyberg JA, Royal Botanic Garden E, Royal Botanic Gardens K (1996) Flora of the Arabian Peninsula and Socotra. Edinburgh University Press, Edinburgh. Retrieved from https://books.google.ae/books?id=U2qasRVcD78C
  29. Mosa KA, Gairola S, Jamdade R, El-Keblawy A, Al Shaer KI, Al Harthi EK, Shabana HA, Mahmoud T (2019) The promise of molecular and genomic techniques for biodiversity research and DNA barcoding of the Arabian Peninsula Flora. Front Plant Sci 9:1929.  https://doi.org/10.3389/fpls.2018.01929 CrossRefPubMedPubMedCentralGoogle Scholar
  30. NCBI Resource Coordinators (2016) Database resources of the National Center for Biotechnology Information. Nucleic Acid Res 44(D1):D7–D19.  https://doi.org/10.1093/nar/gkv1290 CrossRefGoogle Scholar
  31. Ojeda DI, Santos-Guerra A, Oliva-Tejera F, Jaen-Molina R, Caujapé-Castells J, Marrero-Rodríguez A, Cronk Q (2014) DNA barcodes successfully identified Macaronesian Lotus (Leguminosae) species within early diverged lineages of Cape Verde and mainland Africa. AoB PLANTS 6:plu050.  https://doi.org/10.1093/aobpla/plu050 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Otto TD, Gomes LH, Alves-Ferreira M, de Miranda AB, Degrave WM (2008) ReRep: computational detection of repetitive sequences in genome survey sequences (GSS). BMC Bioinform 9(1):366.  https://doi.org/10.1186/1471-2105-9-366 CrossRefGoogle Scholar
  33. Park S, Ruhlman TA, Sabir JSM, Mutwakil MHZ, Baeshen MN, Sabir MJ, Baeshen NA, Jansen RK (2014) Complete sequences of organelle genomes from the medicinal plant Rhazya stricta(Apocynaceae) and contrasting patterns of mitochondrial genome evolution across asterids. BMC Genom 15(1):405.  https://doi.org/10.1186/1471-2164-15-405 CrossRefGoogle Scholar
  34. Patil TS, Jamdade RA, Patil SM, Govindwar SP, Muley DV (2018) DNA barcode based delineation of freshwater fishes from northern Western Ghats of India, one of the world’s biodiversity hotspots. Biodivers Conserv.  https://doi.org/10.1007/s10531-018-1604-0 CrossRefGoogle Scholar
  35. Perez-de-Castro MA, Vilanova S, Canizares J, Pascual L, Blanca MJ, Diez JM, Prohens J, Pico B (2012) Application of genomic tools in plant breeding. Curr Genom 13(3):179–195.  https://doi.org/10.2174/138920212800543084 CrossRefGoogle Scholar
  36. Savolainen O, Karhu A (2000) Assessment of biodiversity with molecular tools in forest trees, pp 395–406.  https://doi.org/10.1007/978-94-017-2311-4_16 CrossRefGoogle Scholar
  37. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815.  https://doi.org/10.1038/35048692 CrossRefGoogle Scholar
  38. Upadhyay AK, Chacko AR, Gandhimathi A, Ghosh P, Harini K, Joseph AP, Joshi AG, Karpe SD, Kaushik S, Kuravadi N, Lingu CS, Mahita J, Malarini R, Malhotra S, Malini M, Mathew OK, Mutt E, Naika M, Nitish S, Pasha SN, Raghavender US, Rajamani A, Shilpa S, Shingate PN, Singh HR, Sukhwal A, Sunitha MS, Sumathi M, Ramaswamy S, Gowda M, Sowdhamini R (2015) Genome sequencing of herb Tulsi (Ocimum tenuiflorum) unravels key genes behind its strong medicinal properties. BMC Plant Biol 15(1):212.  https://doi.org/10.1186/s12870-015-0562-x CrossRefPubMedPubMedCentralGoogle Scholar
  39. Vogel F, Hofius D, Paulus KE, Jungkunz I, Sonnewald U (2011) The second face of a known player: Arabidopsis silencing suppressor AtXRN4 acts organ-specifically. New Phytol 189(2):484–493.  https://doi.org/10.1111/j.1469-8137.2010.03482.x CrossRefPubMedGoogle Scholar
  40. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63.  https://doi.org/10.1038/nrg2484 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Weitschek E, Fiscon G, Felici G (2014) Supervised DNA Barcodes species classification: analysis, comparisons and results. BioData Min 7(1):4.  https://doi.org/10.1186/1756-0381-7-4 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Xiaohui Z, Zhen Y, Shiyong M, Yang Q, Xinhua Y, Xiaohua C, Feng C, Zhangyan W, Yuyan S, Yi J, Bo L, Di S, Haiping W, Na C, Yundan D, Jian W, Jinglei W, Caixia G, Jun W, Xiaowu W, Xixiang L (2015) A de novo Genome of a Chinese Radish Cultivar. Hortic Plant J 1(3):155–164.  https://doi.org/10.16420/J.ISSN.2095-9885.2016-0028 CrossRefGoogle Scholar
  43. Yesson C, Barcenas RT, Hernandez HM, De La Luz Ruiz-Maqueda M, Prado A, Rodriguez VM, Hawkins JA (2011) DNA barcodes for Mexican Cactaceae, plants under pressure from wild collecting. Mol Ecol Resour 11(5):775–783.  https://doi.org/10.1111/j.1755-0998.2011.03009.x CrossRefPubMedGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • Rahul A. Jamdade
    • 1
    Email author
  • Tamer Mahmoud
    • 2
  • Sanjay Gairola
    • 2
  1. 1.Plant Biotechnology LaboratorySharjah Research AcademySharjahUAE
  2. 2.Sharjah Seed Bank and Herbarium, Sharjah Research AcademySharjahUAE

Personalised recommendations