Advertisement

3 Biotech

, 9:305 | Cite as

Effectiveness of Bacillus pumilus PDSLzg-1, an innovative Hydrocarbon-Degrading Bacterium conferring antifungal and plant growth-promoting function

  • Kun Hao
  • Hidayat Ullah
  • Xinghu Qin
  • Hongna Li
  • Feng Li
  • Ping GuoEmail author
Original Article

Abstract

Genome of the hydrocarbon-degrading bacterium Bacillus pumilus PDSLzg-1 was analyzed. A group of gene clusters and pathways associated with nitrogen fixation, plant-bacterial interactions, plant growth-promoting hormone synthesis, antibiotics, secondary metabolite, and disease resistance were identified. In addition, 0.06 mg/L of 3-indoleacrylic acid (IAA) and 2 mg/L of gibberellin (GA) were, respectively, detected in PDSLzg-1 fermentation broth by high-performance liquid chromatography (HPLC). Up-regulated expression levels of 11 key genes related to GA and IAA biosynthesis pathways were detected after the induction of 0.2% n-hexadecane. Furthermore, bioassays showed that PDSLzg-1 fermentation could significantly promote the length and biomass of the stems and roots of Triticum aestivum L., while inhibited Colletotrichum truncatum colonization. Results indicated that B. pumilus PDSLzg-1 had plant growth-promoting and antifungal functions, besides its potential applications in phyto-microbial bioremediation combinations for oil-contaminated soil.

Keywords

Antifungal Plant hormones Phyto-microbial remediation Plant growth-promoting rhizobacteria 

Notes

Acknowledgments

We thank Shan Xue for editing the figures.

Funding

This work was supported by the China Major Science and Technology Program for Water Pollution Control and Treatment, the Standardization and Scale of Application of Rural Drinking Water Security Technology (2015ZX07402003-4).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

13205_2019_1842_MOESM1_ESM.jpg (74 kb)
Supplementary material 1 (JPEG 74 kb)
13205_2019_1842_MOESM2_ESM.jpg (2.1 mb)
Supplementary material 2 (JPEG 2153 kb)
13205_2019_1842_MOESM3_ESM.jpg (1 mb)
Supplementary material 3 (JPEG 1069 kb)
13205_2019_1842_MOESM4_ESM.jpg (1.4 mb)
Supplementary material 4 (JPEG 1433 kb)
13205_2019_1842_MOESM5_ESM.docx (41 kb)
Supplementary material 5 (DOCX 40 kb)
13205_2019_1842_MOESM6_ESM.docx (26 kb)
Supplementary material 6 (DOCX 25 kb)
13205_2019_1842_MOESM7_ESM.docx (37 kb)
Supplementary material 7 (DOCX 36 kb)
13205_2019_1842_MOESM8_ESM.docx (16 kb)
Supplementary material 8 (DOCX 16 kb)
13205_2019_1842_MOESM9_ESM.docx (16 kb)
Supplementary material 9 (DOCX 16 kb)
13205_2019_1842_MOESM10_ESM.docx (16 kb)
Supplementary material 10 (DOCX 16 kb)

References

  1. Ali B, Sabri AN, Ljung K, Hasnain S (2009) Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett Appl Microbiol 48:542–547.  https://doi.org/10.1111/j.1472-765X.2009.02565.x CrossRefPubMedGoogle Scholar
  2. Anith KN, Sreekumar A, Sreekumar J (2015) The growth of tomato seedlings inoculated with co-cultivated Piriformospora indica and Bacillus pumilus. Symbiosis 65(1):9–16.  https://doi.org/10.1007/s13199-015-0313-7 CrossRefGoogle Scholar
  3. Belbahri L, Chenari BA, Rekik I, Alenezi FN, Vallat A, Luptakova L, Petrovova E, Oszako T, Cherrad S, Vacher S, Rateb ME (2017) Comparative genomics of Bacillus amyloliquefaciens strains reveals a core genome with traits for habitat adaptation and a secondary metabolites rich accessory genome. Front Microbiol 8:1438.  https://doi.org/10.3389/fmicb.2017.01438 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T (2013) antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 41(W1):W204–W212.  https://doi.org/10.1093/nar/gkt449 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bömke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–1893.  https://doi.org/10.1016/j.phytochem.2009.05.020 CrossRefPubMedGoogle Scholar
  6. Boottanun P, Potisap C, Hurdle JG, Sermswan RW (2017) Secondary metabolites from bacillus amyloliquefaciens isolated from soil can kill burkholderia pseudomallei. AMB Express 7:16CrossRefGoogle Scholar
  7. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2008) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37(suppl_1):D233–D238.  https://doi.org/10.1093/nar/gkn663 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Caspi R, Altman T, Dale JM, Dreher K, Fulcher CA, Gilham F, Kaipa P, Karthikeyan AS, Kothari A, Krummenacker M, Latendresse M (2009) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 38(suppl_1):D473–D479.  https://doi.org/10.1093/nar/gkp875 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chettri B, Mukherjee A, Langpoklakpam JS, Chattopadhyay D, Singh AK (2016) Kinetics of nutrient enhanced crude oil degradation by Pseudomonas aeruginosa AKS1 and Bacillus sp. AKS2 isolated from Guwahati refinery, India. Environ Poll 216:548–558.  https://doi.org/10.1016/j.envpol.2016.06.008 CrossRefGoogle Scholar
  10. Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13(9):393–397.  https://doi.org/10.1016/S0167-7799(00)88987-8 CrossRefGoogle Scholar
  11. Das S, Majumdar B, Saha AR (2015) Biodegradation of plant pectin and hemicelluloses with three novel Bacillus pumilus strains and their combined application for quality jute fibre production. Agric Res 4(4):354–364.  https://doi.org/10.1007/s40003-015-0188-0 CrossRefGoogle Scholar
  12. De Boer W, Gunnewiek PJK, Lafeber P, Janse JD, Spit BE, Woldendorp JW (1998) Anti-fungal properties of chitinolytic dune soil bacteria. Soil Biol Biochem 30:193–203CrossRefGoogle Scholar
  13. De-la-Pena C, Lei Z, Watson BS, Sumner LW, Vivanco JM (2008) Root-microbe communication through protein secretion. J Biol Chem 283:25247–25255.  https://doi.org/10.1074/jbc.M801967200 CrossRefPubMedGoogle Scholar
  14. Feitkenhauer H, Müller R, Mauml H (2003) Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 6070 C by Thermus and Bacillus spp. Biodegradation 14(6):367–372.  https://doi.org/10.1023/A:1027357615649 CrossRefPubMedGoogle Scholar
  15. Gaby JC, Buckley DH (2014) A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria. Database.  https://doi.org/10.1093/database/bau001 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ghachi ME, Bouhss A, Blanot D, Mengin-Lecreulx D (2004) The bacA gene of Escherichia coli encodes an undecaprenyl pyrophosphate phosphatase activity. J Biol Chem 279:30106–30113.  https://doi.org/10.1074/jbc.M401701200 CrossRefPubMedGoogle Scholar
  17. Gurav R, Tang J, Jadhav J (2017) Novel chitinase producer bacillus pumilus rst25 isolated from the shellfish processing industry revealed antifungal potential against phyto-pathogens. Int Biodeterior Biodegr 125:228–234.  https://doi.org/10.1016/j.ibiod.2017.09.015 CrossRefGoogle Scholar
  18. Gurska J, Wang W, Gerhardt KE, Khalid AM, Isherwood DM, Huang XD, Glick BR, Greenberg BM (2009) Three year field test of a plant growth promoting rhizobacteria enhanced phytoremediation system at a land farm for treatment of hydrocarbon waste. Environ Sci Technol 43(12):4472–4479.  https://doi.org/10.1021/es801540h CrossRefPubMedGoogle Scholar
  19. Gutiérrez-Mañero FJ, Ramos-Solano B, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111(2):206–211.  https://doi.org/10.1034/j.1399-3054.2001.1110211.x CrossRefGoogle Scholar
  20. Hao K, Li H, Li F, Guo P (2016) Complete genome sequence of Bacillus pumilus PDSLzg-1, a hydrocarbon-degrading bacterium isolated from oil-contaminated soil in China. Genome Announcements 4(5):e01079-16.  https://doi.org/10.1128/genomeA.01079-16 CrossRefPubMedPubMedCentralGoogle Scholar
  21. He P, Hao K, Blom J, Rückert C, Vater J, Mao Z, Wu Y, Hou M, He P, He Y, Borriss R (2013) Genome sequence of the plant growth promoting strain Bacillus amyloliquefaciens subsp. plantarum B9601-Y2 and expression of mersacidin and other secondary metabolites. J Biotechnol 164(2):281–291.  https://doi.org/10.1016/j.jbiotec.2012.12.014 CrossRefGoogle Scholar
  22. Heidarzadeh N, Baghaee-Ravari S (2016) Application of Bacillus pumilus as a potential biocontrol agent of Fusarium wilt of tomato. Arch Phytopathol Plant Protect 48:841–849.  https://doi.org/10.1080/03235408.2016.1140611 CrossRefGoogle Scholar
  23. Hernandez JP, de-Bashan LE, Rodriguez DJ, Rodriguez Y, Bashan Y (2009) Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils. Eur J Soil Biol. 45(1):88–93.  https://doi.org/10.1016/j.ejsobi.2008.08.004 CrossRefGoogle Scholar
  24. Idris EE, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Interact 20(6):619–626.  https://doi.org/10.1094/MPMI-20-6-0619 CrossRefPubMedGoogle Scholar
  25. Jang JO, Lee JB, Kim BS, Kang SC, Hwang CW, Shin KS, Kwon GS (2011) Characterization and antifungal activity from soilborne streptomyces sp. am50 towards major plant pathogens. Korean J Environ Agric. 30:346–356.  https://doi.org/10.5338/KJEA.2011.30.3.346 CrossRefGoogle Scholar
  26. Kafilzadeh F, Amiri P, Jahromi AR, Mojoodi N (2013) Isolation and molecular identification of fluoranthene degrading bacteria from the mangrove sediments in South of Iran. Int J Biosci. 3(5):60–67.  https://doi.org/10.12692/ijb/3.5.60-67 CrossRefGoogle Scholar
  27. Kang Y, Shen M, Wang H, Zhao Q (2013) A possible mechanism of action of plant growth-promoting rhizobacteria (PGPR) strain Bacillus pumilus WP8 via regulation of soil bacterial community structure. J Gen Appl Microbiol 59(4):267–277.  https://doi.org/10.2323/jgam.59.267 CrossRefPubMedGoogle Scholar
  28. Kato T, Miyanaga A, Kanaya S, Morikawa M (2010) Gene cloning and characterization of an aldehyde dehydrogenase from long-chain alkane-degrading Geobacillus thermoleovorans B23. Extremophiles 14(1):33.  https://doi.org/10.1007/s00792-009-0285-8 CrossRefPubMedGoogle Scholar
  29. Khanna P, Goyal D, Khanna S (2011) Pyrene degradation by Bacillus pumilus isolated from crude oil contaminated soil. Polycyclic Aromat Compd 31(1):1–15.  https://doi.org/10.1080/10406638.2010.542792 CrossRefGoogle Scholar
  30. Kobayashi M, Suzuki T, Fujita T, Masuda M, Shimizu S (1995) Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetonitrile in plant-associated bacteria, Agrobacterium and Rhizobium. Proc Natl Acad Sci 92(3):714–718.  https://doi.org/10.1073/pnas.92.3.714 CrossRefPubMedGoogle Scholar
  31. Kumar S, Mukherjee MM, Varela MF (2013) Modulation of bacterial multidrug resistance efflux pumps of the major facilitator superfamily. Int J Bacteriol.  https://doi.org/10.1155/2013/204141 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Liu B, Pop M (2008) ARDB—antibiotic resistance genes database. Nucleic Acids Res. 37(suppl_1):D443–D447.  https://doi.org/10.1093/nar/gkn656 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mefteh FB, Daoud A, Chenari BA, Alenezi FN, Luptakova L, Rateb ME, Kadri A, Gharsallah N, Belbahri L (2017) Fungal root microbiome from healthy and brittle leaf diseased date palm trees (Phoenix dactylifera L.) reveals a hidden untapped arsenal of antibacterial and broad spectrum antifungal secondary metabolites. Front Microbiol. 8:307.  https://doi.org/10.3389/fmicb.2017.00307 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Normanly J, Cohen JD, Fink GR (1993) Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proc Natl Acad Sci 90(21):10355–10359.  https://doi.org/10.1073/pnas.90.21.10355 CrossRefPubMedGoogle Scholar
  36. Ouyang J, Shao X, Li J (2000) Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana. Plant J 24(3):327–334.  https://doi.org/10.1046/j.1365-313x.2000.00883.x CrossRefPubMedGoogle Scholar
  37. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 8(10):785.  https://doi.org/10.1038/nmeth.1701 CrossRefPubMedGoogle Scholar
  38. Ren JH, Li H, Wang YF, Ye JR, Yan AQ, Wu XQ (2013) Biocontrol potential of an endophytic Bacillus pumilus JK-SX001 against poplar canker. Biol Control 67(3):421–430.  https://doi.org/10.1016/j.biocontrol.2013.09.012 CrossRefGoogle Scholar
  39. Sampaio CJS, Souza JRBD, Damião AO, Bahiense TC, Roque MRA (2019) Biodegradation of polycyclic aromatic hydrocarbons (pahs) in a diesel oil-contaminated mangrove by plant growth-promoting rhizobacteria. 3 Biotech. 9:155CrossRefGoogle Scholar
  40. Shali A, Ghasemi S, Ahmadian G, Ranjbar G, Dehestani A, Khalesi N, Motallebi E, Vahed M (2010) Bacillus pumilus SG2 chitinases induced and regulated by chitin, show inhibitory activity against Fusarium graminearum and Bipolaris sorokiniana. Phytoparasitica 38(2):141–147.  https://doi.org/10.1007/s12600-009-0078-8 CrossRefGoogle Scholar
  41. Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56(4):845–857.  https://doi.org/10.1111/j.1365-2958.2005.04587.x CrossRefPubMedGoogle Scholar
  42. Thompson MK, Keithly ME, Harp J, Cook PD, Jagessar KL, Sulikowski GA, Armstrong RN (2013) Structural and chemical aspects of resistance to the antibiotic Fosfomycin conferred by FosB from Bacillus cereus. Biochemistry-US 52:7350–7362.  https://doi.org/10.1021/bi4009648 CrossRefGoogle Scholar
  43. Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42(2):117–126.  https://doi.org/10.1134/S0003683806020013 CrossRefGoogle Scholar
  44. Tudzynski B, Hölter K (1998) Gibberellin biosynthetic pathway in Gibberella fujikuroi: evidence for a gene cluster. Fungal Genet Biol 25(3):157–170.  https://doi.org/10.1006/fgbi.1998.1095 CrossRefPubMedGoogle Scholar
  45. Vargas WA, Sanz-Martín JM, Rech GE, Rivera LP, Benito EP, Díaz-Mínguez JM, Thon MR, Sukno SA (2012) Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colletotricum graminicola in maize. Plant Physiol.  https://doi.org/10.1104/pp.111.190397 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Vergani L, Mapelli F, Zanardini E, Terzaghi E, Di Guardo A, Morosini C, Raspa G, Borin S (2017) Phyto-rhizoremediation of polychlorinated biphenyl contaminated soils: an outlook on plant-microbe beneficial interactions. Sci Total Environ 575:1395–1406.  https://doi.org/10.1016/j.scitotenv.2016.09.218 CrossRefPubMedGoogle Scholar
  47. Xu Y, Sun GD, Jin JH, Liu Y, Luo M, Zhong ZP, Liu ZP (2014) Successful bioremediation of an aged and heavily contaminated soil using a microbial/plant combination strategy. J Hazard Mater 264:430–438.  https://doi.org/10.1016/j.jhazmat.2013.10.071 CrossRefPubMedGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • Kun Hao
    • 1
    • 2
  • Hidayat Ullah
    • 2
    • 3
  • Xinghu Qin
    • 4
  • Hongna Li
    • 1
  • Feng Li
    • 1
  • Ping Guo
    • 1
    Email author
  1. 1.Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in AgricultureChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China
  2. 2.State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China
  3. 3.Department of AgricultureThe University of SwabiSwabiPakistan
  4. 4.School of BiologyUniversity of St AndrewsSt AndrewsUK

Personalised recommendations