Advertisement

3 Biotech

, 9:223 | Cite as

An overview of designing and selection of sgRNAs for precise genome editing by the CRISPR-Cas9 system in plants

  • Ajay Prakash Uniyal
  • Komal Mansotra
  • Sudesh Kumar Yadav
  • Vinay KumarEmail author
Original Article
  • 128 Downloads

Abstract

A large number of computational tools have been documented in recent years for identification of target-specific valid single-guide (sg) RNAs (18–20 nucleotide long sequence) that is an important component for the efficient utilization of the CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats—CRISPR-associated Protein) system. Despite optimization of Cas9, other major concerns are on-target efficiency and off-target activity that depend upon the sequence(s) of target-specific sgRNA(s). However, a very little attention has been paid for identification of the best-hit sgRNA for precise targeting as well as minimizing the off-target effects. The aim of this present work is to offer comparative insight into existing CRISPR software tools with their unique features (including targeted genome) and utilities. These available web tools were found to be designed based upon only a few limited mathematical models. Among all these available web tools, three (Benchling, Desktop and CRISPR-P) have been curated as exclusively available for plant genome-editing purpose. These three software tools have been comprehensively described and analyzed with single same target enquiry from two randomly selected genes (IDM2 and IDM3 from Arabidopsis thaliana). Interestingly, all these selected tools generated different results (sgRNAs) even for the same query. In fact, the sequence of sgRNA is considered an important parameter to determine the efficiency and specificity of sgRNAs for precise genome editing. Thus, there is an urgent requirement to pay attention for a validated sgRNA-designing tool for precise DNA editing in plants. In conclusion, this work will encourage building up a consensus for developing a universal valid sgRNA designing for different organisms including plants.

Keywords

Genome editing sgRNA Web tools CRISPR-Cas9 Plants 

Abbreviations

Cas

CRISPR-associated protein/gene

CRISPR

Clustered regularly interspaced short palindromic repeats

sgRNA

Single-guide RNA

crRNA

CRISPR RNA

PAM

Protospacer adjacent motif

CFD

Cutting frequency determination

ZFN

Zinc finger nuclease

CLD

CRISPR library designer

TALEN

Transcription activator-like effector nuclease

tracRNA

Trans-activating CRISPR RNA

DESKGEN

Desktop genetics

NGS

Next-generation sequencing

Notes

Acknowledgements

The authors express deepest gratitude to Vice Chancellor of Central University of Punjab, India for providing financial support during course of this work. “UGC-BSR start up grant” sanctioned to Vinay Kumar, who sponsors this research. The authors thank anonymous reviewers and editors for critical reading the manuscript and suggesting substantial improvements.

Author contributions

VK conceived and designed the present research. VK and KM conducted the experiments. KM and VK analyzed the data. APU, SKY and VK wrote the manuscript. All the authors read and approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30:1473–1475PubMedPubMedCentralGoogle Scholar
  2. Bassett AR, Liu JL (2014) CRISPR-Cas9 and genome editing in Drosophila. J Genet Genom 41:7–19Google Scholar
  3. Bhowmik P, Ellison E, Polley B et al (2018) Targeted mutagenesis in wheat microspores using CRISPR-Cas9. Sci Rep 8:6502PubMedPubMedCentralGoogle Scholar
  4. Briner AE, Donohoue PD, Gomaa AA et al (2014) Guide RNA functional modules direct Cas9 activity and orthogonality. Mol Cell 56:333–339PubMedGoogle Scholar
  5. Cai Y, Chen L, Shi S et al (2018) CRISRP-Cas9-mediated deletion of large genomic fragments in soyabean. Int J Mol Sci 19:3835PubMedCentralGoogle Scholar
  6. Chari R, Mali P, Moosburner M, Church GM (2015) Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat Methods 12:823PubMedPubMedCentralGoogle Scholar
  7. Chen H, Choi J, Bailey S (2014) Cut site selection by the two nuclease domains of the Cas9 RNA guided endonuclease. J Biol Chem 289:13284–13294PubMedPubMedCentralGoogle Scholar
  8. Chen R, Xu Q, Liu Y et al (2018) Generation of transgene-free maize male sterile lines using the CRISPR-Cas9 System. Front Plant Sci 9:1180PubMedPubMedCentralGoogle Scholar
  9. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR-Cas systems. Science 339:819–823PubMedPubMedCentralGoogle Scholar
  10. Doench JG, Hartenian E, Graham DB et al (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32:1262–1267PubMedPubMedCentralGoogle Scholar
  11. Doench JG, Fus IN, Sullender M et al (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34:184–191PubMedPubMedCentralGoogle Scholar
  12. Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096PubMedGoogle Scholar
  13. Duan CG, Wang X, Xie S et al (2017) A pair of transposon-derived proteins function in a histone acetyltransferase complex for active DNA demethylation. Cell Res 27:226–240PubMedGoogle Scholar
  14. Fagerlund RD, Staals RHJ, Fineran PC (2015) The Cpf1 CRISPR-Cas protein expands genome-editing tools. Genome Biol 16:251PubMedPubMedCentralGoogle Scholar
  15. Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Zhu JK (2013) Efficient genome editing in plants using a CRISPR-Cas system. Cell Res 23:1229PubMedPubMedCentralGoogle Scholar
  16. Feng C, Yuan J, Wang R et al (2016) Efficient targeted genome modification in maize using CRISPR-Cas9 system. J Genet Genom 43:37–43Google Scholar
  17. Fine EJ, Cradick TJ, Zhao CL, Lin Y, Bao G (2014) An online bioinformatics tool predicts zinc finger and TALE nuclease off-target cleavage. Nucleic Acids Res 42:e42PubMedGoogle Scholar
  18. Fogarty NM, McCarthy A, Snijders KE et al (2017) Genome editing reveals a role for OCT4 in human embryogenesis. Nature 550:67PubMedPubMedCentralGoogle Scholar
  19. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32:279–284PubMedPubMedCentralGoogle Scholar
  20. Gang L, Zhang H, Lou D, Yu D (2016) Selection of highly efficient sgRNAs for CRISPR-Cas9-based plant genome editing. Sci Rep 6:21451Google Scholar
  21. Gopalappa R, Suresh B, Ramakrishan S, Kim HH (2018) paired D10A Cas9 nickneses are sometimes more efficient than individual nucleases for gene disruption. Nucleic Acids Res 46:e71PubMedPubMedCentralGoogle Scholar
  22. Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–W57PubMedPubMedCentralGoogle Scholar
  23. Heigwer F, Kerr G, Boutros M (2014) E-CRISP: fast CRISPR target site identification. Nat Methods 11:122–123PubMedGoogle Scholar
  24. Hough SH, Ajetunmobi A, Brody L, Humphryes-Kirilov N, Perello E (2016) Desktop genetics. Per Med 13:517–521PubMedPubMedCentralGoogle Scholar
  25. Hsu PD, Scott DA, Weinstein JA, RanFA KonermannS, Agarwala V, Cradick TJ (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827PubMedPubMedCentralGoogle Scholar
  26. Jiang F, Doudna JA (2017) CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529PubMedGoogle Scholar
  27. Jinek M, Jiang FG, Taylor DW et al (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343:1247997PubMedPubMedCentralGoogle Scholar
  28. Kim D, Alptekin B, Budak H (2018) CRISPR-Cas9 genome editing in wheat. Funct Integr Genom 18:31–41Google Scholar
  29. Kuan PF, Powers S, He S, Li K, Zhao X, Huang B (2017) A systematic evaluation of nucleotide properties for CRISPR sgRNA design. BMC Bioinform 18:21Google Scholar
  30. Kumar V, Jain M (2014) The CRISPR-Cas system for plant genome editing: advances and opportunities. J Exp Bot 66:47–57PubMedGoogle Scholar
  31. Li Q, Wang X, Sun H, Zeng J, Cao Z, Li Y, Qian W (2015) Regulation of active DNA demethylation by a methyl-CpG-binding domain protein in Arabidopsis thaliana. PLoS Genet 11:e1005210PubMedPubMedCentralGoogle Scholar
  32. Li J, Zhang H, Si X et al (2017a) Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene. J Genet Genom 44:465–468Google Scholar
  33. Li WR, Liu CX, Zhang XM, Chen L et al (2017b) CRISPR-Cas9-mediated loss of FGF5 function increases wool staple length in sheep. FEBS 284:2764–2773Google Scholar
  34. Liang G, Zhang H, Lou D, Yu D (2016) Selection of highly efficient sgRNAs for CRISPR-Cas9-based plant genome editing. Sci Rep 6:21451PubMedPubMedCentralGoogle Scholar
  35. Liu H, Wei Z, Dominguez A, Li Y, Wang X, Qi LS (2015) CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression, and activation. Bioinformatics 31:3676–3678 (btv423) PubMedPubMedCentralGoogle Scholar
  36. Liu X, Homma A, Sayadi J, Yang S, Ohashi J, Takumi T (2016) Sequence feature associated with cleavage efficiency of CRISPR-Cas 9 system. Sci Rep 6:19675PubMedPubMedCentralGoogle Scholar
  37. Ma M, Ye AY, Zheng W, Kong L (2013) A guide RNA sequence design platform for the CRISPR-Cas9 system for model organism genomes. Biomed Res Int 2013:1–4Google Scholar
  38. Mendoza BJ, Trinh CT (2017) Enhanced guide-RNA design and targeting analysis for precise CRISPR genome editing of single and consortia of industrially relevant and non-model organisms. Bioinformatics 34:16–23Google Scholar
  39. Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu L (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23:1233PubMedPubMedCentralGoogle Scholar
  40. Miao C, Xiao L, Hua K et al (2018) Mutations in subfamily of abscisic acid receptor genes promote rice growth and productivity. PNAS 115:6058–6063PubMedGoogle Scholar
  41. Mojica FJ, Díez-Villaseñor C, García-Martínez J, Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733–740PubMedGoogle Scholar
  42. Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E (2014) CHOPCHOP: a CRISPR-Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 42:W401–W407PubMedPubMedCentralGoogle Scholar
  43. Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR-Cas guide RNA with reduced off-target sites. Bioinformatics 31:1120–1123PubMedGoogle Scholar
  44. Nishimasu H, RanFA Hsu PD, Konermann S, Shehata SI, Dohmae N et al (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–949PubMedPubMedCentralGoogle Scholar
  45. Nowak CM, Lawson S, Zerez M, Bleris L (2016) Guide RNA engineering for versatile Cas9 functionality. Nucleic Acids Res 44:9555–9564PubMedPubMedCentralGoogle Scholar
  46. Oh JN, Choi KH, Lee CK (2017) Multi-resistance strategy for viral diseases and in vitro shRNA verification method in pigs. Asian Australas J Anim Sci.  https://doi.org/10.5713/ajas.17.0749 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Park J, Bae S, Kim JS (2015) Cas-Designer: a web-based tool for the choice of CRISPR-Cas9 target sites. Bioinformatics 31:4014–4016PubMedGoogle Scholar
  48. Pellegrini R (2016) Edit single bases with Benchling! https://blog.benchling.com/2016/07/18/base-editor. Accessed 18 July 2016
  49. Periwal V (2016) A comprehensive overview of computational resources to aid in precision genome editing with engineered nucleases. Brief Bioinform 18:698–711Google Scholar
  50. Pliatsika V, Rigoutsos I (2015) Off-Spotter: very fast and exhaustive enumeration of genomic look alikes for designing CRISPR-Cas guide RNAs. Biol Direct 10:4PubMedPubMedCentralGoogle Scholar
  51. Plummer RJ, Guo Y, Peng Y (2018) A CRISPR reimagining: new twists and turns of CRISPR beyond the genome-engineering revolution. J Cell Biochem 119:1299–1308PubMedGoogle Scholar
  52. Prykhozhij SV, Rajan V, Gaston D, Berman JN (2015) CRISPR multitargeter: a web tool to find common and unique CRISPR single RNA targets in a set of similar sequences. PLoS One 10:e0138634PubMedPubMedCentralGoogle Scholar
  53. Pyott D, Sheehan E, Molnar A (2016) Engineering of CRISPR-Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol Plant Pathol 17:1276–1288PubMedPubMedCentralGoogle Scholar
  54. Ran FA, Hsu PD, Lin CY et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389PubMedPubMedCentralGoogle Scholar
  55. Ross MJ, Coates PT (2017) Using CRISPR to inactivate endogenous retroviruses in pigs: an important step toward safe xenotransplantation. Kidney Int 93:4–6PubMedGoogle Scholar
  56. Sánchez-León S, Gil-Humanes J, Ozuna CV et al (2018) Low-gluten, nontransgenic wheat engineered with CRISPR-Cas9. Plant Biotechnol J 16:902–910PubMedGoogle Scholar
  57. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355PubMedPubMedCentralGoogle Scholar
  58. Sander JD, Maeder ML, Reyon D, Voytas DF, Joung JK, Dobbs D (2010) ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Nucleic Acids Res 38:W462–W468PubMedPubMedCentralGoogle Scholar
  59. Schwinn MK, Machleidt T, Zimmerman K, Eggers CT, Dixon AS, Hurst R et al (2017) CRISPR-mediated tagging of endogenous proteins with a luminescent peptide. ACS Chem Biol 13:467–474PubMedGoogle Scholar
  60. Shen C, Que Z, Xia Y et al (2017) Rapid generation of genetic diversity by multiplex CRISPR-Cas9 genome editing in rice. Sci China Life Sci 60:89–93Google Scholar
  61. Shi J, Gao H, Wang H et al (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216PubMedGoogle Scholar
  62. Shimatani Z, Kashojiya S, Takayama M et al (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35:441–443PubMedGoogle Scholar
  63. Shmakov S, Abudayyeh OO, Makarova KS et al (2015) Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60:385–397PubMedPubMedCentralGoogle Scholar
  64. Slaymaker IM, Gao L, Zetshe B et al (2016) Rationally engineered Cas9 nucleases with improved specificaity. Science 351:84–88PubMedGoogle Scholar
  65. Song J, yang D, Ruan J, Zhang J (2017) Production of immunodeficient rabbits by multiplex embryo transfer and multiplex gene targeting. Sci Rep 7:12202PubMedPubMedCentralGoogle Scholar
  66. Sontheimer EJ, Wolfe SA (2015) Cas9 gets a classmate. Nat Biotechnol 33:1240–1241PubMedGoogle Scholar
  67. Stemmer M, Thumgerger T, del Sol Keyer M, Wittbrodt J, Mateo JL (2017) CCTop: an intuitive, flexible and reliable CRISPR-Cas9 target prediction tool. PLoS One 12:e0176619PubMedPubMedCentralGoogle Scholar
  68. Tang L, Zeng Y, Du H, Gong M (2017) CRISPR-Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol Genet Genom 292:525–533Google Scholar
  69. Ueta R, Abe C, Watanabe T et al (2017) Rapid breeding of parthenocarpic tomato plants using CRISPR-Cas9. Sci Rep 7:507PubMedPubMedCentralGoogle Scholar
  70. Uniyal AP, Yadav SK, Kumar V (2019) The CRISPR–Cas9, genome editing approach: a promising tool for drafting defense strategy against begomoviruses including cotton leaf curl viruses. J Plant Biochem Biotechnol.  https://doi.org/10.1007/s13562-019-00491-6 CrossRefGoogle Scholar
  71. Upadhyay SK, Sharma S (2014) SSFinder: high throughput CRISPR-Cas target sites prediction tool. Biomed Res Int 2014:742482PubMedPubMedCentralGoogle Scholar
  72. Vilarino M, Rashid ST, Suchy FP, McNabb BR et al (2017) CRISPR-Cas9 microinjection in oocytes disables pancreas development in sheep. Sci Rep 12:17472Google Scholar
  73. Wang W, Pan Q, Akhunova A et al (2018) Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J 1:65–74PubMedPubMedCentralGoogle Scholar
  74. Wei C, Wang F, Liu W, Zhao W, Yang Y, Li K, Xiao L, Shen J (2018) CRISPR-Cas9 targeting of the androgen receptor suppresses the growth of LNCaP human prostate cancer cells. Mol Med Rep 17:2901–2906PubMedGoogle Scholar
  75. Wright AV, Nunez JK, Doudna JA (2016) Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164:29–44PubMedGoogle Scholar
  76. Wu F, Ge Gao, Pan T, Yang Z et al (2017) Generation of a SMO homozygous knockout human embryonic stem cell line WAe001-A-16 by CRISPR-Cas9 editing. Stem Cell Res 24:89–93PubMedGoogle Scholar
  77. Xiao A, Cheng Z, Kong L, Zhu Z, Lin S, Gao G, Zhang B (2014) CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 30:1180–1182 (btt764) PubMedGoogle Scholar
  78. Xie S, Shen B, Zhang C, Huang X, Zhang Y (2014) sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS One 9:e100448PubMedPubMedCentralGoogle Scholar
  79. Yang L, Li L, Hai-Yang L, Sen L, Feng X, Ling-Ling C (2014) CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 7:1494–1496Google Scholar
  80. Yang Y, Zhu G, Li R (2017) The RNA editing factor SIORRM4 is required for normal fruit ripening in tomato. Plant Physiol 175:1690–1702PubMedPubMedCentralGoogle Scholar
  81. Yin K, Gao C, Qiu JL (2017) Progress and prospects in plant genome editing. Nat Plants 3:17107PubMedGoogle Scholar
  82. Zetsche B, Heidenreich M, Mohanraju P et al (2017) Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nature Biotechnol 35:178Google Scholar
  83. Zhang Y, Heidrich N, Ampattu BJ et al (2013) Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol Cell 50:488–503PubMedPubMedCentralGoogle Scholar
  84. Zhang F, Wen Y, Guo X (2014) CRISPR-Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet 23:R40–R46PubMedGoogle Scholar
  85. Zhang Z, Ge X, Luo X et al (2018a) Simultaneous editing of two copies of Gh14-3-3d confers enhanced transgene-clean plant defense against Verticillium dahliae in allotetraploid upland cotton. Front Plant Sci 9:842PubMedPubMedCentralGoogle Scholar
  86. Zhang T, Zheng Q, Yi X et al (2018b) Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant Biotechnol J 16:1415–1423PubMedPubMedCentralGoogle Scholar
  87. Zhu LJ, Holmes BR, Aronin N, Brodsky MH (2014) CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems. PLoS One 9:e108424PubMedPubMedCentralGoogle Scholar
  88. Zou E, Cai YJ, Li K, Wei Y (2017) One-step generation of complete gene knockout mice and monkeys by CRISPR-Cas9-mediated gene editing with multiple sgRNAs. Cell Res 27:933–945Google Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.Department of Plant Sciences, School for Basic and Applied SciencesCentral University of PunjabBathindaIndia
  2. 2.Center of Innovative and Applied BiotechnologyMohaliIndia

Personalised recommendations