Advertisement

3 Biotech

, 9:210 | Cite as

Genetic diversity and population structure of watermelon (Citrullus sp.) genotypes

  • Anamika Pandey
  • Mohd. Kamran KhanEmail author
  • Rabia Isik
  • Onder Turkmen
  • Ramazan Acar
  • Musa Seymen
  • Erdogan E. HakkiEmail author
Original Article
  • 111 Downloads

Abstract

Genetic polymorphism amid plant species is a crucial factor for plant improvement and maintaining their biodiversity. Evaluation of genetic diversity amongst plant species is significant to deal with the environmental stress conditions and their effective involvement in the breeding programs. Hence, in present study, an attempt has been made towards the genetic assessment of individual and bulked populations of 25 watermelon genotypes, belonging to Citroides (citron watermelon) and Lanatus (dessert watermelon) group from Konya, Thrace, Turkmenistan, Saudi Arabia and Turkey. The employed Random Amplified Polymorphic DNA (RAPD) and Inter-Simple Sequence Polymorphism (ISSR) marker systems provided 69.4 and 95.4% polymorphisms, respectively. Different clustering methods showed clear grouping of the genotypes based on the geographical origin and species. Citron genotypes from Turkmenistan stood apart from all the Turkish Lanatus genotypes. However, Saudi Arab Lanatus genotype grouped with native Turkish varieties indicating the genetic linkage. Among all the Turkmenistan Citron genotypes, Turkmenistan-11 was the most distinct form. Moreover, sufficient genetic variation was found between the commercial and native Lanatus genotypes of Turkey as well as Citron genotypes of Turkmenistan. Hence, it will be beneficial to include these genotypes in the future breeding programs to transfer disease-resistant alleles from Citron to Lanatus genotypes.

Keywords

Genetic diversity Molecular breeding Population structure RAPD ISSR Watermelon 

Notes

Acknowledgements

This study has been conducted under the support provided by Bilimsel Araştırma Projeleri (BAP) Selcuk University Project, Grant number 13401008 and 12401022, Turkey.

References

  1. Abdel Khalik K, Abd El-Twab M, Galal R (2014) Genetic diversity and relationships among Egyptian Galium (Rubiaceae) and related species using ISSR and RAPD markers. Biologia 69(3):300–310.  https://doi.org/10.2478/s11756-013-0314-z CrossRefGoogle Scholar
  2. Arif IA, Bakir MA, Khan HA, Al Farhan AH, Al Homaidan AA, Bahkali AH, Sadoon MA, Shobrak M (2010) A brief review of molecular techniques to assess plant diversity. Int J Mol Sci 11(5):2079–2096.  https://doi.org/10.3390/ijms11052079 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bates DM, Robinson RW (1995) Cucumbers, melons and water-melons: Cucumis and Citrullus (Cucurbitaceae). Evolution of Crop Plants Longman Scientific and Technical, HarlowGoogle Scholar
  4. Che KP, Liang C-Y, Wang Y-G, Jin D-M, Wang B, Xu Y, Kang G-B, Zhang H-Y (2003) Genetic assessment of watermelon germplasm using the AFLP technique. HortScience 38(1):81–84CrossRefGoogle Scholar
  5. Choudhary BR, Sudhakar P, Singh PK (2012) Morphological diversity analysis among watermelon (Citrullus lanatus (Thunb) Mansf.) genotypes. Prog Hortic 44(2):321–326Google Scholar
  6. Chug-Ahuja JK, Holden JM, Forman MR, Mangels AR, Beecher GR, Lanza E (1993) The development and application of a carotenoid database for fruits, vegetables, and selected multicomponent foods. J Am Diet Assoc 93(3):318–323PubMedCrossRefGoogle Scholar
  7. Clinton SK (1998) Lycopene: chemistry, biology, and implications for human health and disease. Nutr Rev 56(2 Pt 1):35–51PubMedGoogle Scholar
  8. Costa R, Pereira G, Garrido I, Tavares-de-Sousa MM, Espinosa F (2016) Comparison of RAPD, ISSR, and AFLP molecular markers to reveal and classify Orchardgrass (Dactylis glomerata L.) germplasm variations. PLoS One 11(4):e0152972.  https://doi.org/10.1371/journal.pone.0152972 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Dane F, Liu J (2007) Diversity and origin of cultivated and citron type watermelon (Citrullus lanatus). Genet Resour Crop Evol 54(6):1255–1265CrossRefGoogle Scholar
  10. Darvasi A, Soller M (1992) Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus. Theor Appl Genet 85(2):353–359.  https://doi.org/10.1007/BF00222881 PubMedCrossRefGoogle Scholar
  11. Davis AR, Levi A, Tetteh A, Wehner T, Russo V, Pitrat M (2007) Evaluation of watermelon and related species for resistance to race 1W powdery mildew. J Am Soc Hortic Sci 132(6):790–795CrossRefGoogle Scholar
  12. Djè Y, Tahi CG, Bi AIZ, Baudoin JP, Bertin P (2010) Use of ISSR markers to assess genetic diversity of African edible seeded Citrullus lanatus landraces. Sci Hortic 124(2):159–164.  https://doi.org/10.1016/j.scienta.2009.12.020 CrossRefGoogle Scholar
  13. Doyle JJ (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  14. Earl D, vonHoldt B (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361.  https://doi.org/10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  15. Edelstein M, Tyutyunik J, Fallik E, Meir A, Tadmor Y, Cohen R (2014) Horticultural evaluation of exotic watermelon germplasm as potential rootstocks. Sci Hortic 165:196–202.  https://doi.org/10.1016/j.scienta.2013.11.010 CrossRefGoogle Scholar
  16. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620.  https://doi.org/10.1111/j.1365-294X.2005.02553.x CrossRefPubMedPubMedCentralGoogle Scholar
  17. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164(4):1567–1587PubMedPubMedCentralGoogle Scholar
  18. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7(4):574–578.  https://doi.org/10.1111/j.1471-8286.2007.01758.x PubMedPubMedCentralCrossRefGoogle Scholar
  19. Fazeli E, Shahriari F, Samizadeh H, Bagheri A, Farsi M (2008) Evaluation of genetic diversity among different genotypes of Brassica napus using random amplified polymorphic DNA markers. Pak J Biol Sci 11(23):2629–2633PubMedCrossRefGoogle Scholar
  20. Gbotto AA, Koffi KK, Bi NDF, Bi STD, Tro HH, Baudoin J-P, Bi IAZ (2016) Morphological diversity in oleaginous watermelon (Citrullus mucosospermus) from the Nangui Abrogoua University germplasm collection. Afr J Biotechnol 15(21):917–929CrossRefGoogle Scholar
  21. Goyal AK, Pradhan S, Basistha BC, Sen A (2015) Micropropagation and assessment of genetic fidelity of Dendrocalamus strictus (Roxb.) nees using RAPD and ISSR markers. 3 Biotech 5(4):473–482PubMedCrossRefGoogle Scholar
  22. Gui FR, Guo JY, Wan FH (2007) Application of ISSR molecular marker in invasive plant species study. J Appl Ecol 18(4):919–927Google Scholar
  23. Gusmini G, Song R, Wehner TC (2005) New sources of resistance to gummy stem blight in watermelon. Crop Sci 45(2):582–588.  https://doi.org/10.2135/cropsci2005.0582 CrossRefGoogle Scholar
  24. Holden JM, Eldridge AL, Beecher GR, Buzzard IM, Bhagwat S, Davis CS, Douglass LW, Gebhardt S, Haytowitz D, Schakel S (1999) Carotenoid content of US foods: an update of the database. J Food Compos Anal 12(3):169–196.  https://doi.org/10.1006/jfca.1999.0827 CrossRefGoogle Scholar
  25. Hopkins DL, Levi A (2008) Progress in the development of Crimson Sweet-type watermelon breeding lines with resistance to Acidovorax avenae subsp. citrulli. In: Cucurbitaceae 2008: Proceedings of the IXth Eucarpia meeting on genetics and breeding of Cucurbitaceae, pp 157–162Google Scholar
  26. Horejsi T, Staub JE (1999) Genetic variation in cucumber (Cucumis sativus L.) as assessed by random amplified polymorphic DNA1. Genet Resour Crop Evol 46(4):337–350.  https://doi.org/10.1023/a:1008650509966 CrossRefGoogle Scholar
  27. Huang XX, Hu J, Wang Y, Song SD, Zhu YF, Zhu SJ (2011) Optimization of ISSR-PCR system for cultivar verification in watermelon (Citrullus lanatus var. lanatus). Seed Sci Technol 39(2):293–302.  https://doi.org/10.15258/sst.2011.39.2.03 CrossRefGoogle Scholar
  28. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9(5):1322–1332.  https://doi.org/10.1111/j.1755-0998.2009.02591.x PubMedPubMedCentralCrossRefGoogle Scholar
  29. Huh YC, Solmaz I, Sari N (2008) Morphological characterization of Korean and Turkish watermelon germplasm. In: Pitrat M (ed) Cucurbitaceae 2008, Proceedings of the 9 EUCARPIA meeting on genetics and breeding of Cucurbitaceae, Avignon (France), pp 327–333Google Scholar
  30. Jarret R, Merrick L, Holms T, Evans J, Aradhya M (1997) Simple sequence repeats in watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai). Genome 40(4):433–441PubMedCrossRefGoogle Scholar
  31. Jeffrey C (1990) Systematic of the Cucurbitaceae. In: Bates DM, Robinson RW, Jeffrey C (eds) Biology and utilization of the Cucurbitaceae. Cornel University Press, Ithaca, pp 3–9Google Scholar
  32. Jonah PM, Bello LL, Lucky O, Midau A, Moruppa SM (2011) The importance of molecular markers in plant breeding programmes. Glob J Sci Front Res 11(5):4–12Google Scholar
  33. Khan MK, Pandey A, Choudhary S, Hakki EE, Akkaya MS, Thomas G (2014) From RFLP to DArT: molecular tools for wheat (Triticum spp.) diversity analysis. Genet Resour Crop Evol 61(5):1001–1032CrossRefGoogle Scholar
  34. Khan MK, Pandey A, Thomas G, Akkaya MS, Kayis SA, Ozsensoy Y, Hamurcu M, Gezgin S, Topal A, Hakki EE (2015) Genetic diversity and population structure of wheat in India and Turkey. AoB Plants 7.  https://doi.org/10.1093/aobpla/plv083 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Kurane J, Shinde V, Harsulkar A (2009) Application of ISSR marker in pharmacognosy: current update. Pharmacogn Rev 3(6):216–228Google Scholar
  36. Lamare A, Rao SR (2015) Efficacy of RAPD, ISSR and DAMD markers in assessment of genetic variability and population structure of wild Musa acuminata colla. Physiol Mol Biol Plants 21(3):349–358.  https://doi.org/10.1007/s12298-015-0295-1 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Levi A, Thomas CE (2005) Polymorphisms among chloroplast and mitochondrial genomes of Citrullus species and subspecies. Genet Resour Crop Evol 52(5):609–617CrossRefGoogle Scholar
  38. Levi A, Thomas CE, Keinath AP, Wehner TC (2001) Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions. Genet Resour Crop Evol 48(6):559–566CrossRefGoogle Scholar
  39. Levi A, Thomas CE, Newman M, Reddy O, Zhang X, Xu Y (2004) ISSR and AFLP markers differ among American watermelon cultivars with limited genetic diversity. J Am Soc Hortic Sci 129(4):553–558CrossRefGoogle Scholar
  40. Levi A, Thomas C, Simmons A, Thies J (2005) Analysis based on RAPD and ISSR markers reveals closer similarities among Citrullus and Cucumis species than with Praecitrullus fistulosus (Stocks) Pangalo. Genet Resour Crop Evol 52(4):465–472.  https://doi.org/10.1007/s10722-005-2260-2 CrossRefGoogle Scholar
  41. Maria D, Angela P, Alexei L (2008) Characteristics of RAPD markers in breeding of Cucumis sativus L. Rom Biotechnol Lett 13(4):3843–3850Google Scholar
  42. Martyn RD, Netzer D (1991) Resistance to races 0, 1, and 2 of Fusarium wilt of watermelon in Citrullus sp. PI-296341-FR. HortScience 26(4):429–432CrossRefGoogle Scholar
  43. Mashilo J, Shimelis H, Odindo AO, Amelework B (2017) Genetic diversity and differentiation in citron watermelon [Citrullus lanatus var. citroides] landraces assessed by simple sequence repeat markers. Sci Hortic 214:99–106.  https://doi.org/10.1016/j.scienta.2016.11.015 CrossRefGoogle Scholar
  44. McGregor CE, Waters V (2013) Pollen viability of F1 hybrids between watermelon cultivars and disease-resistant, infraspecific crop wild relatives. HortScience 48(12):1428–1432CrossRefGoogle Scholar
  45. Meloni M, Perini D, Filigheddu R, Binelli G (2005) Genetic variation in five Mediterranean populations of Juniperus phoenicea as revealed by inter-simple sequence repeat (ISSR) markers. Ann Bot 97(2):299–304PubMedCrossRefGoogle Scholar
  46. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis—a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88(21):9828–9832.  https://doi.org/10.1073/pnas.88.21.9828 PubMedCrossRefGoogle Scholar
  47. Mo Y, Yang R, Liu L, Gu X, Yang X, Wang Y, Zhang X, Li H (2016) Growth, photosynthesis and adaptive responses of wild and domesticated watermelon genotypes to drought stress and subsequent re-watering. Plant Growth Regul 79(2):229–241.  https://doi.org/10.1007/s10725-015-0128-9 CrossRefGoogle Scholar
  48. Mujaju C, Sehic J, Werlemark G, Garkava-Gustavsson L, Fatih M, Nybom H (2010) Genetic diversity in watermelon (Citrullus lanatus) landraces from Zimbabwe revealed by RAPD and SSR markers. Hereditas 147(4):142–153.  https://doi.org/10.1111/j.1601-5223.2010.02165.x PubMedCrossRefGoogle Scholar
  49. Ocal N, Akbulut M, Gulsen O, Yetisir H, Solmaz I, Sari N (2014) Genetic diversity, population structure and linkage disequilibrium among watermelons based on peroxidase gene markers. Sci Hortic 176:151–161CrossRefGoogle Scholar
  50. Padmalatha K, Prasad M (2006) Optimization of DNA isolation and PCR protocol for RAPD analysis of selected medicinal and aromatic plants of conservation concern from Peninsular India. Afr J Biotechnol 5(3):230–234Google Scholar
  51. Perkins-Veazie P, Roberts W, Collins J, Perez K (2003) Lycopene variation among watermelons: cultivars, potassium, and ripeness. HortScience 38:1295Google Scholar
  52. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959PubMedPubMedCentralGoogle Scholar
  53. Rhee S-J, Han B-K, Jang YJ, Sim TY, Lee GP (2015) Construction of a genetic linkage map using a frame set of simple sequence repeat and high-resolution melting markers for watermelon (Citrullus spp.). Hortic Environ Biotechnol 56(5):669–676.  https://doi.org/10.1007/s13580-015-0110-5 CrossRefGoogle Scholar
  54. Rohlf F (1998) NTSYS-PC numerical taxonomy and multivariate analysis, ver. 2.02. Applied Biostatistics, New YorkGoogle Scholar
  55. Semagn K, Bjørnstad Å, Ndjiondjop M (2006) An overview of molecular marker methods for plants. Afr J Biotechnol 5(25):2540–2568Google Scholar
  56. Shi A, Kantartzi S, Mmbaga M, Chen P (2010) Development of ISSR PCR markers for diversity study in dogwood (Cornus spp.). Agric Biol J N Am 1(3):189–194CrossRefGoogle Scholar
  57. Sikdar B, Bhattacharya M, Mukherjee A, Banerjee A, Ghosh E, Ghosh B, Roy SC (2010) Genetic diversity in important members of Cucurbitaceae using isozyme, RAPD and ISSR markers. Biol Plant 54(1):135–140.  https://doi.org/10.1007/s10535-010-0021-3 CrossRefGoogle Scholar
  58. Singh M, Rana MK, Kumar K, Bisht IS, Dutta M, Gautam NK, Sarker A, Bansal KC (2013) Broadening the genetic base of lentil cultivars through inter-sub-specific and interspecific crosses of Lens taxa. Plant Breed 132(6):667–675.  https://doi.org/10.1111/pbr.12089 CrossRefGoogle Scholar
  59. Singh D, Singh R, Sandhu JS, Chunneja P (2017) Morphological and genetic diversity analysis of Citrullus landraces from India and their genetic inter relationship with continental watermelons. Sci Hortic 218:240–248.  https://doi.org/10.1016/j.scienta.2017.02.013 CrossRefGoogle Scholar
  60. Soghani ZN, Rahimi M, Nasab MA, Maleki M (2018) Grouping and genetic diversity of different watermelon ecotypes based on agro-morphological traits and ISSR marker. Iheringia Série Bot 73(1):53–59.  https://doi.org/10.21826/2446-8231201873107 CrossRefGoogle Scholar
  61. Solmaz I, Sarı N (2009) Characterization of watermelon (Citrullus lanatus) accessions collected from Turkey for morphological traits. Genet Resour Crop Evol 56(2):173–188.  https://doi.org/10.1007/s10722-008-9353-7 CrossRefGoogle Scholar
  62. Solmaz I, Sari N, Aka-Kacar Y, Yalcin-Mendi NY (2010) The genetic characterization of Turkish watermelon (Citrullus lanatus) accessions using RAPD markers. Genet Resour Crop Evol 57(5):763–771.  https://doi.org/10.1007/s10722-009-9515-2 CrossRefGoogle Scholar
  63. Sun Y, Wang J, Crouch JH, Xu Y (2010) Efficiency of selective genotyping for genetic analysis of complex traits and potential applications in crop improvement. Mol Breed 26(3):493–511CrossRefGoogle Scholar
  64. Tetteh AY, Wehner TC, Davis AR (2010) Identifying resistance to powdery mildew race 2W in the USDA-ARS watermelon germplasm collection. Crop Sci 50(3):933–939.  https://doi.org/10.2135/cropsci2009.03.0135 CrossRefGoogle Scholar
  65. Thies JA, Ariss JJ, Hassell RL, Olson S, Kousik CS, Levi A (2010) Grafting for management of southern root-knot nematode, Meloidogyne incognita, in watermelon. Plant Dis 94(10):1195–1199PubMedCrossRefGoogle Scholar
  66. Trindade H, Costa MM, Lima SB, Pedro LG, Figueiredo AC, Barroso JG (2009) A combined approach using RAPD, ISSR and volatile analysis for the characterization of Thymus caespititius from Flores, Corvo and Graciosa islands (Azores, Portugal). Biochem Syst Ecol 37(5):670–677.  https://doi.org/10.1016/j.bse.2009.10.006 CrossRefGoogle Scholar
  67. Ulutürk Zİ (2009) Determination of genetic diversity in watermelon (Citrullus lanatus (Thunb.) Matsum & Nakai) germplasms. Master's thesis, Izmir Institute of TechnologyGoogle Scholar
  68. Wanbo L, Song M, Liu F, Wang H (2002) Assessment of genetic diversity of melon (Cucumis melo) germplasm based on RAPD and ISSR. J Agric Biotechnol 10(3):231–236Google Scholar
  69. Wechter WP, Kousik C, McMillan M, Levi A (2012) Identification of resistance to Fusarium oxysporum f. sp. niveum race 2 in Citrullus lanatus var. citroides plant introductions. HortScience 47(3):334–338CrossRefGoogle Scholar
  70. Whitaker TW, Davis GN (1962) Cucurbits. Botany, cultivation, and utilization. Leonard Hill (Books), Ltd, London; Interscience Publishers Inc, New YorkGoogle Scholar
  71. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18(22):6531–6535PubMedPubMedCentralCrossRefGoogle Scholar
  72. Xu Y, Wang J, Crouch J (2008) Selective genotyping and pooled DNA analysis: an innovative use of an old concept. In: Recognizing past achievement, meeting future needs, proceedings of the 5th international crop science congress, 2008Google Scholar
  73. Yan HJ, Dai SL, Wu NH (1997) RAPD analysis of natural populations of Acanthopanax brachypus. Cell Res 7(1):99PubMedCrossRefGoogle Scholar
  74. Yang X-P, Liu G, Hou XL, Xu JH, Gao C-Z (2010) Evaluation of genetic purity of watermelon hybrid (Citrullus lanatus) using RAPD and ISSR molecular markers. Jiangsu J Agric Sci 6:035Google Scholar
  75. Yoshimura K, Masuda A, Kuwano M, Yokota A, Akashi K (2008) Programmed proteome response for drought avoidance/tolerance in the root of a C3 xerophyte (wild watermelon) under water deficits. Plant Cell Physiol 49(2):226–241PubMedCrossRefGoogle Scholar
  76. Zou C, Pingxi W, Yunbi X (2016) Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol J 14(10):1941–1955.  https://doi.org/10.1111/pbi.12559 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • Anamika Pandey
    • 1
  • Mohd. Kamran Khan
    • 1
    Email author
  • Rabia Isik
    • 2
  • Onder Turkmen
    • 3
  • Ramazan Acar
    • 4
  • Musa Seymen
    • 5
  • Erdogan E. Hakki
    • 1
    Email author
  1. 1.Department of Soil Science and Plant NutritionSelcuk UniversityKonyaTurkey
  2. 2.Department of HorticultureInonu UniversityMalatyaTurkey
  3. 3.Department of HorticultureSelcuk UniversityKonyaTurkey
  4. 4.Department of Field CropsSelcuk UniversityKonyaTurkey
  5. 5.Department of Agricultural Machineries and Technological EngineeringSelcuk UniversityKonyaTurkey

Personalised recommendations