Advertisement

3 Biotech

, 9:169 | Cite as

Biochemical characterization of acyl-coenzyme A synthetases involved in mycobacterial steroid side-chain catabolism and molecular design: synthesis of an anti-mycobacterial agent

  • Yang Niu
  • Fanglan Ge
  • Yongzhi Yang
  • Yao Ren
  • Wei LiEmail author
  • Guiying Chen
  • Dongmei Wen
  • Fuhong Liu
  • Li Xiong
Original Article
  • 48 Downloads

Abstract

The metabolism of host cholesterol by Mycobacterium tuberculosis is an important factor for both its virulence and pathogenesis. However, the rationale for this cholesterol metabolism has not been fully understood yet. In the present study, we characterized several previously undescribed acyl-CoA synthetases that are involved in the steroid side-chain degradation in Mycobacterium smegmatis, and an analogue of intermediate from steroid degradation, 5′-O-(lithocholoyl sulfamoyl) adenosine (LCA-AMS), was successfully designed and synthesized to be used as a specific anti-mycobacterial agent. The acyl-CoA synthetases exhibited strong preferences for the length of side chain. FadD19 homologs, including FadD19 (MSMEG_5914), FadD19-2 (MSMEG_2241), and FadD19-4 (MSMEG_3687), are unanimously favorable cholesterol with a C8 alkanoate side chain. FadD17 (MSMEG_5908) and FadD1 (MSMEG_4952) showed high preferences for steroids, containing a C5 alkanoate side chain. FadD8 (MSMEG_1098) exhibited specific activity toward cholestenoate with a C8 alkanoate side chain. An acylsulfamoyl analogue of lithocholate, 5′-O-(lithocholoyl sulfamoyl) adenosine (LCA-AMS), was designed and synthesized. As expected, the intermediate analogue not only specifically inhibited those steroid-activated acyl-CoA synthetases, but also selectively inhibited the growth of mycobacterial species, including M. tuberculosis, M. smegmatis, and Mycobacterium neoaurum. Overall, our research advanced our understanding of mycobacterial steroid degradation and provided new insights to develop novel mechanism-based anti-mycobacterial agents.

Keywords

Biochemical characterization Acyl-coenzyme A synthetases Steroid side-chain degradation Anti-mycobacterial agent 

Notes

Acknowledgements

This study was funded by the National Natural Science Foundation of China (no. 31571285), the Sichuan provincial Science & Technology Department (2012JY0067), and the Sichuan Provincial Department of Education (17ZA0323), College student innovation, and entrepreneurship training program (201310636026).

Author contributions

YN, FG, and YY did all the biological and analytical work on acyl-coenzyme A synthetases. YR and XZ did the synthetic work. WL conceived and designed the project. GC, DW, FL, and XY prepared the purified acyl-coenzyme A synthetases. All the authors participated in writing the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Supplementary material

13205_2019_1703_MOESM1_ESM.jpg (64 kb)
Fig. S1 Synthesis of LCA-AMS. TBDSC = tert-butyldimethylsilyl chloride; CDI = 1,1-carbonyldiimidazole; DBU =1,8-diazabicyclo [5.4.0] undec-7-ene; TBAF = tetrabutylammonium; THF = tetrahydrofuran (JPEG 63 kb)
13205_2019_1703_MOESM2_ESM.jpg (683 kb)
Fig. S2 TOF-MS map of LCA-AMS (JPEG 683 kb)
13205_2019_1703_MOESM3_ESM.jpg (324 kb)
Fig. S3 TOF-MS characterization of steroid-CoA thioesters. A: cholest-4-en-26-oyl-CoA, B: cholyl-CoA (JPEG 323 kb)
13205_2019_1703_MOESM4_ESM.jpg (436 kb)
Fig. S4 HPLC characterization of steroid-CoA thioesters (JPEG 435 kb)
13205_2019_1703_MOESM5_ESM.jpg (2 mb)
Fig. S5 Activation of fatty acids and steroids by different FadDs of M. smegmatisem (JPEG 2098 kb)
13205_2019_1703_MOESM6_ESM.jpg (708 kb)
Fig.S6 qRT-PCR analyses of M. smegmatismc2155 FadD genes during growth in different media (JPEG 708 kb)
13205_2019_1703_MOESM7_ESM.docx (19 kb)
Table S1 Primers used in the cloning of FadD genes (DOCX 19 kb)
13205_2019_1703_MOESM8_ESM.doc (42 kb)
Table S2 The primers used for qRT-PCR analyses (DOC 41 kb)
13205_2019_1703_MOESM9_ESM.docx (19 kb)
Table S3 Acyl-coenzyme A synthetase orthologs and related genes from the several mycobacterial genomes (DOCX 19 kb)

References

  1. Abuhammad A (2017) Cholesterol metabolism: a potential therapeutic target in Mycobacteria. Br J Pharmacol 174(14):2194–2208CrossRefGoogle Scholar
  2. Arora P, Goyal A, Natarajan VT, Rajakumara E, Verma P, Gupta R, Yousuf M, Trivedi OA, Mohanty D, Tyagi A (2009) Mechanistic and functional insights into fatty acid activation in Mycobacterium tuberculosis. Nat Chem Biol 5(3):166–173CrossRefGoogle Scholar
  3. Bernson VSM (1976) Acetyl-CoA hydrolase; activity, regulation and physiological, significance of the enzyme in brown adipose tissue from hamster. Eur J Biochem 67(2):403–410CrossRefGoogle Scholar
  4. Capyk JK, Kalscheuer RG (2009) Mycobacterial cytochrome p450 125 (cyp125) catalyzes the terminal hydroxylation of C27 steroids. J Biol Chem 284(51):35534–35542CrossRefGoogle Scholar
  5. Casabon I, Crowe AM, Liu J, Eltis LD (2013) FadD3 is an acyl-CoA synthetase that initiates catabolism of cholesterol rings C and D in actinobacteria. Mol Microb 87(2):269–283CrossRefGoogle Scholar
  6. Casabon I, Swain K, Crowe AM, Eltis LD, Mohn WW (2014) Actinobacterial acyl coenzyme A synthetases involved in steroid side-chain catabolism. J Bacteriol 196(3):579–587CrossRefGoogle Scholar
  7. Crowe AM, Casabon I, Brown KL, Jie L, Lian J, Rogalski JC, Hurst TE, Snieckus V, Foster LJ, Eltis LD (2017) Catabolism of the last two steroid rings in Mycobacterium tuberculosis and other bacteria. Mbio 8(2):e00321-17CrossRefGoogle Scholar
  8. Fernández Cabezón L, Galán B, García JL (2017) Molecular characterization of a new gene cluster for steroid degradation in Mycobacterium smegmatis. Environ Microbiol 19(7):2546–2563CrossRefGoogle Scholar
  9. Ferreras JA, Ryu JS, Lello FD, Tan DS, Quadri LEN (2005) Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis. Nat Chem Biol 1(1):29–32CrossRefGoogle Scholar
  10. Ferreras JA, Stirrett KL, Lu X, Ryu JS, Soll CE, Tan DS, Quadri LEN (2008) Mycobacterial phenolic glycolipid virulence factor biosynthesis: mechanism and small-molecule inhibition of Polyketide chain initiation. Chem Biol 15(1):51–61CrossRefGoogle Scholar
  11. Ge F, Li W, Chen G, Liu Y, Zhang G, Yong B, Wang Q, Wang N, Huang Z, Li W (2011) Draft genome sequence of Gordonia neofelifaecis NRRL B-59395, a cholesterol-degrading actinomycete. J Bacteriol 193(18):5045–5046CrossRefGoogle Scholar
  12. Geize RVD, Yam K, Heuser T, Wilbrink MH, Hara H, Anderton MC, Sim E, Dijkhuizen L, Davies JE, Mohn WW (2007) A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci USA 104(6):1947CrossRefGoogle Scholar
  13. Gibson DT, Wang KC, Sih CJ, Whitlock H Jr (1966) Mechanisms of steroid oxidation by microorganisms. IX. On the mechanism of ring A cleavage in the degradation of 9,10-seco steroids by microorganisms. J Biol Chem 241(3):551–559PubMedGoogle Scholar
  14. Griffin JE, Pandey AK, Gilmore SA, Mizrahi V, Mckinney JD, Bertozzi CR, Sassetti CM (2012) Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. Chem Biol 19(2):218–227CrossRefGoogle Scholar
  15. Groot PH, Scholte HR, Hülsmann WC (1976) Fatty acid activation: specificity, localization, and function. Adv Lipid Res 14:75–126CrossRefGoogle Scholar
  16. Guo F, Zhang H, Fritzler JM, Rider SD Jr, Xiang L, Mcnair NN, Mead JR, Zhu G (2014) Amelioration of Cryptosporidium parvum infection in vitro and in vivo by targeting parasite fatty acyl-coenzyme A synthetases. J Infect Dis 209(8):1279–1287CrossRefGoogle Scholar
  17. Johnston JB, Ouellet H, Montellano PR (2010) Functional redundancy of steroid C26-monooxygenase activity in Mycobacterium tuberculosis revealed by biochemical and genetic analyses. J Biol Chem 285(47):36352–36360CrossRefGoogle Scholar
  18. Kendall SL, Withers M, Soffair CN, Moreland NJ, Gurcha S, Sidders B, Frita R, Bokum AT, Besra GS, Lott JS (2007) A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol Microbiol 65(3):684–699CrossRefGoogle Scholar
  19. Léger M, Gavalda S, Guillet V, Rest BVD, Slama N, Montrozier H, Mourey L, Quémard A, Daffé M, Marrakchi H (2009) The dual function of the Mycobacterium tuberculosis FadD32 required for mycolic acid biosynthesis. Chem Biol 16(5):510–519CrossRefGoogle Scholar
  20. Liu Y, Chen G, Ge F, Li W, Zeng L, Cao W (2011) Efficient biotransformation of cholesterol to androsta-1,4-diene-3,17-dione by a newly isolated actinomycete Gordonia neofelifaecis. World J Microbiol Biotechnol 27(4):759–765CrossRefGoogle Scholar
  21. Lovewell RR, Sassetti CM, Vanderven BC (2016) Chewing the fat: lipid metabolism and homeostasis during M. tuberculosis infection. Curr Opin Microbiol 29:30–36CrossRefGoogle Scholar
  22. Meng Y, Rui L, Guja KE, Wipperman M, Clair JRS, Bonds AC, Garciadiaz M, Sampson NS (2015) Unraveling cholesterol catabolism in Mycobacterium tuberculosis: ChsE4-ChsE5 α2β2 Acyl-CoA dehydrogenase initiates β-oxidation of 3-Oxo-cholest-4-en-26-oyl CoA. Acs Infect Dis 1(2):110–125CrossRefGoogle Scholar
  23. Mohn WW, Van DGR, Stewart GR, Okamoto S, Liu J, Dijkhuizen L, Eltis LD (2008) The actinobacterial mce4 locus encodes a steroid transporter. J Biol Chem 283(51):35368–35374CrossRefGoogle Scholar
  24. Mohn WW, Wilbrink MH, Casabon I, Stewart GR, Liu J, Van DGR, Eltis LD (2012) Gene cluster encoding cholate catabolism in Rhodococcus spp. J Bacteriol 194(24):6712–6719CrossRefGoogle Scholar
  25. Nesbitt NM, Yang X (2010) A thiolase of Mycobacterium tuberculosis is required for virulence and production of androstenedione and androstadienedione from cholesterol. Infect Immun 78(1):275–282CrossRefGoogle Scholar
  26. Ouellet H, Johnston JB, de Montellano PR (2011) Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis. Trends Microbiol 19(11):530–539CrossRefGoogle Scholar
  27. Pandey AK, Sassetti CM (2008) Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA 105(11):4376–4380CrossRefGoogle Scholar
  28. Pei Y, Parreira V, Nicholson VM, Prescott JF (2007) Mutation and virulence assessment of chromosomal genes of Rhodococcus equi 103. Can J Vet Res 71:1–7PubMedPubMedCentralGoogle Scholar
  29. Rodríguezgarcía A, Fernándezalegre E, Morales A, Solalanda A, Lorraine J, Macdonald S, Dovbnya D, Smith MC, Donova M, Barreiro C (2016) Complete genome sequence of ‘Mycobacterium neoaurum’ NRRL B-3805, an androstenedione (AD) producer for industrial biotransformation of sterols. J Biotechnol 224:64–65CrossRefGoogle Scholar
  30. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  31. Shinnick TM, Good RC (1994) Mycobacterial taxonomy. Eur J Clin Microbiol Infect Dis 13(11):884–901CrossRefGoogle Scholar
  32. Soto-Ramirez MD, Aguilar-Ayala DA, Garcia-Morales L, Rodriguez-Peredo SM, Badillo-Lopez C, Rios-Muñiz DE, Meza-Segura MA, Rivera-Morales GY, Leon-Solis L, Cerna-Cortes JF (2017) Cholesterol plays a larger role during Mycobacterium tuberculosis in vitro dormancy and reactivation than previously suspected. Tuberculosis 103:1–9CrossRefGoogle Scholar
  33. Sun B, Zeng Q, Luo Z, Yang HJ, Feng Y (2017) Synthesis of (25R)-cholestenoic acid. Chin J Pharm 2017(48):174–178Google Scholar
  34. Trivedi OA, Arora P, Sridharan V, Tickoo R, Mohanty D, Gokhale RS (2004) Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nat 428(6981):441–445CrossRefGoogle Scholar
  35. Uhía I, Galán B, Kendall SL, Stoker NG, García JL (2012) Cholesterol metabolism in Mycobacterium smegmatis. Environ Microbiol Rep 4(2):168–182CrossRefGoogle Scholar
  36. Vanderven BC, Fahey RJ, Lee W, Liu Y, Abramovitch RB, Memmott C, Crowe AM, Eltis LD, Perola E, Deininger DD (2015) Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium’s metabolism is constrained by the intracellular environment. PLoS Pathog 11(2):e1004679CrossRefGoogle Scholar
  37. Wilbrink MH, Petrusma M, Dijkhuizen L, Geize RVD (2011) FadD19 of Rhodococcus rhodochrous DSM43269, a steroid-coenzyme A ligase essential for degradation of C-24 branched sterol side chains. Appl Environ Microbiol 77(13):44554464CrossRefGoogle Scholar
  38. Yang X, Nesbitt NM, Dubnau E, Smith I, Sampson NS (2009) Cholesterol metabolism increases the metabolic pool of propionate in M. tuberculosis. Biochem 48(18):3819–3821CrossRefGoogle Scholar
  39. Zhuravleva E, Gut H, Hynx D, Marcellin D, Bleck CK, Genoud C, Cron P, Keusch JJ, Dummler B, Esposti MD (2012) Acyl coenzyme A thioesterase Them5/Acot15 is involved in cardiolipin remodeling and fatty liver development. Mol Cell Biol 32(14):2685–2697CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • Yang Niu
    • 1
  • Fanglan Ge
    • 1
  • Yongzhi Yang
    • 1
  • Yao Ren
    • 1
  • Wei Li
    • 1
    Email author
  • Guiying Chen
    • 1
  • Dongmei Wen
    • 1
  • Fuhong Liu
    • 1
  • Li Xiong
    • 1
  1. 1.College of Life SciencesSichuan Normal UniversityChengduPeople’s Republic of China

Personalised recommendations