3 Biotech

, 9:172 | Cite as

Tunicates as a biocontrol tool for larvicides acute toxicity of Zika virus vector Aedes aegypti

  • Velusamy Arumugam
  • Manigandan Venkatesan
  • Nishakavya Saravanan
  • Saravanan Ramachandran
  • Karthi Sengodan
  • Umamaheswari Sundaresan
  • Satheesh Kumar PalanisamyEmail author
Short Reports


In this present study, we conducted untargeted metabolic profiling using gas chromatography–mass spectrometry (GC–MS) analysis of ascidian Didemnum bistratum to assess the chemical constituents by searching in NIST library with promising biological properties against anti-bacterial and Zika virus vector mosquitocidal properties. Metabolites, steroids and fatty acids are abundant in crude compounds of ascidian D. bistratum and showed potential zone growth inhibition against bacterial strains Kluyvera ascorbate (10 mm). The active crude compounds of D. bistratum exhibited prominent larvicidal activity against the Zika vector mosquitoes of Aedes aegypti (LC50 values of 0.44 mg/ml) and Cluex quinquefasciatus (LC50 values of 2.23 mg/ml). The findings of this study provide a first evidence of the biological properties exhibited by D. bistratum extracts, thus increasing the knowledge about the Zika virus vector mosquitocidal properties of ascidian. Overall, ascidian D. bistratum is promising and biocontrol or eco-friendly tool against A. aegypti and C. quinquefasciatus with prospective toxicity against non-target organisms.


Sea squirts Metabolites GC–MS Anti-bacterial Zika vector Larvicidal 



This work is supported by the DST-Science and Research Engineering Board, India under grant SB/YS/LS-374/2013, UGC-FIST and UGC-SAP, New Delhi.

Compliance with ethical standards

Conflict of interest

All the authors declare that they have no conflict of interest.


  1. Arivoli S, Samuel T (2011) Bioefficacy of Citrullus colocynthis (L.) Schrad (cucurbitaceae) whole plant extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Dipters: Culicidae). Int J Curr Res 3:296–304Google Scholar
  2. Avis TJ, Bélanger RR (2001) Specificity and mode of action of the antifungal fatty acid cis-9-heptadecenoic acid produced by Pseudozyma flocculosa. Appl Environ Microbiol 67:956–960CrossRefGoogle Scholar
  3. Boyer S, Calvez E, Chouin-Carneiro T, Diallo D, Failloux AB (2018) An overview of mosquito vectors of Zika virus. Microbes Infect 20(11–12):646–660CrossRefGoogle Scholar
  4. Diallo D, Sall AA, Diagne CT, Faye O, Faye O, Ba Y, Hanley KA, Buenemann M, Weaver SC, Diallo M (2011) Zika virus emergence in mosquitoes in southeastern Senegal. PLoS One 9(10):e109442CrossRefGoogle Scholar
  5. Donia MS, Wang B, Dunbar DC, Desai PV, Patny A, Avery M, Hamann MT (2008) Mollamides B and C, cyclic hexapeptides from the Indonesian tunicate Didemnum molle. J Nat Prod 71(6):941–945CrossRefGoogle Scholar
  6. Elumalai D, Hemalatha P, Kaleena PK (2017) Larvicidal activity and GC–MS analysis of Leucas aspera against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. J Sau Soc Agric Sci 16:306–313Google Scholar
  7. Finlayson R, Pearce AN, Page MJ, Kaiser M, Bourguet-Kondracki ML, Harper JL, Webb VL, Copp BR (2011) Didemnidines A and B, indole spermidine alkaloids from the New Zealand ascidian Didemnum sp. J Nat Prod 74(4):888–892CrossRefGoogle Scholar
  8. Hussain SM, Ananthan G (2009) Antimicrobial activity of the crude extracts of compound ascidians, Didemnum candidum and Didemnum psammathodes (Tunicata: Didemnidae) from Mandapam (South East Coast of India). Curr Res J Biol Sci 1(3):168–171Google Scholar
  9. Kumaran NS, Bragadeeswaran S (2014) Nutritional composition of the Colonial Ascidian Eudistoma viride and Didemnum psammathodes. Biosci Biotech Res Asia 1:331–338CrossRefGoogle Scholar
  10. Mahyoub JA, Panneerselvam C, Murugan K, Roni M, Trivedi S, Nicoletti M, Hawas UW, Shaher FM, Bamakhrama MA, Canale A, Benelli G (2017) Seagrasses as sources of mosquito nano-larvicides? Toxicity and uptake of Halodule uninervis-biofabricated silver nanoparticles in dengue and Zika virus vector Aedes aegypti. J Cluster Sci 28(1):565–580CrossRefGoogle Scholar
  11. Mendiola J, Hernandez H, Sariego I, Mendiola J, Hernández H, Sariego I, Rojas L, Otero A, Ramírez A, de Los Angeles Chavez M, Payrol JA, Hernández A (2006) Antimalarial activity from three ascidians: an exploration of different marine invertebrate phyla. Trans R Soc Trop Med Hyg 100:909–916CrossRefGoogle Scholar
  12. Morris LA, Jaspars M, Kettenes-van den Bosch JJ, Versluis K, Heck AJ, Kelly SM, Price NC (2001) Metal binding of Lissoclinum patella metabolites. Part 1: patellamides A, C and ulithiacyclamide A. Tetrahedron 57(15):3185–3197CrossRefGoogle Scholar
  13. Palanisamy SK, Morabito R, Remigante A, Spanò N, La Spada G, Giacobbe S, Marino A (2016) Biological activity of extract from Styela plicata and Ascidia mentula (Ascidiacea). Journal of Biological Research-Bollettino della Società Italiana di Biologia Sperimentale 89(1):27–32CrossRefGoogle Scholar
  14. Palanisamy SK, Arumugam V, Peter MD, Sundaresan U (2018a) Patterns of chemical diversity in the marine ascidian Phallusia spp.: anti-tumor activity and metabolic pathway inhibiting steroid biosynthesis. 3 Biotech 8(5):251CrossRefGoogle Scholar
  15. Palanisamy SK, Arumugam V, Rajendran S, Ramadoss AS, Nachimuthu S, Peter MD, Sundaresan U (2018b) Chemical diversity and antiproliferative of marine algae. J Nat Prod Res. CrossRefGoogle Scholar
  16. Santalova EA, Makarieva TN, Gorshkova IA, Dmitrenok AS, Krasokhin VB, Stonik VA (2004) Sterols from six marine sponges. Biochem Syst Ecol 32(2):153–167CrossRefGoogle Scholar
  17. Selva Prabhu A, Ananthan G, Sathish Kumar R (2012) Antibacterial activity of marine ascidian Polyclinum madrasensis (Sebastian, 1952) against human clinical isolates. Int J Ins Phar Life Sci 2(3)Google Scholar
  18. Suarez-Jimenez GM, Burgos-Hernandez A, Ezquerra-Brauer JM (2012) bioactive peptides and depsipeptides with anticancer potential: sources from marine animals. Mar dru 10(5):963–986CrossRefGoogle Scholar
  19. WHO (2017) Zika virus infection—India. Accessed 8 Apr 2019
  20. Zhen XH, Quan YC, Jiang HY, Wen ZS, Qu YL, Guan LP (2015) Fucosterol, a sterol extracted from Sargassum fusiforme, shows antidepressant and anticonvulsant effects. Eur J Pharmacol 768:131–138CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • Velusamy Arumugam
    • 1
  • Manigandan Venkatesan
    • 2
  • Nishakavya Saravanan
    • 2
  • Saravanan Ramachandran
    • 2
  • Karthi Sengodan
    • 3
  • Umamaheswari Sundaresan
    • 1
  • Satheesh Kumar Palanisamy
    • 4
    Email author
  1. 1.Department of Environmental Biotechnology, School of Environmental SciencesBharathidasan UniversityTiruchirappalliIndia
  2. 2.Native Medicine and Marine Pharmacology Laboratory, Department of Medical BiotechnologyChettinad Academy of Research and EducationChennaiIndia
  3. 3.Department of BiochemistryK.S. Rangasamy College of Arts and Science (Autonomous)NamakkalIndia
  4. 4.Department of Zoology, Ryan Institute, School of Natural ScienceNational University of IrelandGalwayIreland

Personalised recommendations