3 Biotech

, 9:134 | Cite as

Phylogenetic diversity of sulfate-reducing bacteria of sediments of Chilika Lake, India, determined through analysis of the dissimilatory sulfite reductase (dsr AB) gene

  • Sri Sasi Jyothsna TadinadaEmail author
  • Rahul Kamidi
  • Saikat Dutta
  • Sasikala Chintalapati
  • Venkata Ramana Chintalapati
Original Article


In this study, the sulfate-reducing bacteria, (SRB) were identified and reported for the first time through analysis of functional gene dsrAB, from the DNA of sediment samples collected from 10 sites of the Chilika lake. The finding illustrates Forty six Operational Taxonomic Units (OTUs), identified from the DGGE which were obtained from the 10 sediment samples. Of these, 34 OTUs exhibited around 78–96% sequence similarity and 12 OTUs showed 97 to 100% sequence similarity to the dsrAB gene of reported type strains of SRB. The sequence information obtained revealed the presence and distribution of diverse types of SRB which include phylotypes related to Desulfovibrio, Desulfonatronovibrio, Desulfomicrobium, Desulfobotulous and Desulfobacca. Upon comparison of dsrAB gene sequences of SRB obtained through this study with those collected from the GenBank, and through the dendrogram constructed, it was observed that except 13 OTUs that clustered closely with the reported type strains, all other 36 OTUs clustered distantly and had no representative member of SRB. This indicated the presence of phylogenetically diverse groups of SRB inhabiting the lake Chilika.


Sulfate-reducing bacteria Sediments Desulfovibrio Dissimilatory sulfite reductase DsrAB gene Chilika Lagoon Operational taxonomic units (OTU’s) 



TS Sasi Jyothsna thanks CSIR for the award of research fellowship. Financial assistance received from DBT and DST (FIST) is acknowledged. We thank Ms. Azmatunnisa for the technical support. Also, I would like to extend my gratitude to Dr. B. Chakradhar, Director, RESPL, for critically reviewing the manuscript and serving as scientific advisor.

Compliance with ethical standards

Conflict of interest

The authors state no conflict of interest for this work.


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. CrossRefGoogle Scholar
  2. Barnes SP, Bradbrook SD, Cragg BA (1998) Isolation of sulfate reducing bacteria from deep sea sediment layers of Pacific Ocean. Geomicrobiol J 15:67–83. CrossRefGoogle Scholar
  3. Barton LL (1995) Sulfate reducing bacteria. In: Atkinson T, Sherwood RF Biotechnology handbooks-8. Series Kluwer Academic/ Plenum Publishers, New YorkGoogle Scholar
  4. Bidle KA, Kastner M, Bartlett DH (1999) A phylogenetic analysis of microbial communities associated with the methane hydrate containing marine fluids and sediments in the Cascadia Margin (ODP site 892B). FEMS Microbiol Lett 177:101–108. CrossRefPubMedGoogle Scholar
  5. Bussmann I, Reichirdt W (1991) Sulfate-reducing bacteria in temporarily oxic sediments with bivalves. Mar Ecol Prog Ser 78:97–102CrossRefGoogle Scholar
  6. Coolen MJL, Cypionka H, Sass AM, Sass, Overmann J (2002) Ongoing modification of Mediterranean Pleistocene sapropels mediated by prokaryotes. Science 296:2407–2410. CrossRefPubMedGoogle Scholar
  7. Crill PM, Martens CS (1987) Biogeochemical cycling in an organic rich coastal marine basin. Temporal and spatial variations in sulfate reduction rates. Geochim Cosmochim Acta 51:1175–1186. CrossRefGoogle Scholar
  8. D’Hondt S, Jørgensen BB, Miller DJ (2004) Distribution of microbial activity in deep sub seafloor sediments. Science 306:2216–2221. CrossRefPubMedGoogle Scholar
  9. Eaton AD, Clesceri LS, Greenberg AE, Franson MAH (2005) Standard methods for the examination of water and wastewater. Am Public Health Assoc 21:1600Google Scholar
  10. Edgcomb VP, McDonald JH, Devereux R, Smith DW (1999) Estimation of bacterial cell numbers in humic-rich salt marsh sediments using probes to 16S rDNA. Appl Environ Microbiol 164:271–279Google Scholar
  11. Fowler CMR (1990) The solid earth, an introduction to global geophysics. Cambridge University Press, CambridgeGoogle Scholar
  12. Fröhlich-Nowoisky J, Kampf CJ, Weber B, Huffman JA, Pöhlker C, Andreae MO, Su H (2016) Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmos Res 182:346–376. CrossRefGoogle Scholar
  13. Hansen TA (1993) Carbon metabolism of sulfate reducing bacteria. In: Odum JM, Singleton R (eds) The sulfate reducing bacteria. Springer Verlag, New York, pp 21–40CrossRefGoogle Scholar
  14. Henrichs SM, Reeburgh WS (1987) Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geo Microbiol J 5:191–237. CrossRefGoogle Scholar
  15. Hill KD, Dauphinee TM, Woods DJ (1989) The uniqueness of the practical salinity scale (1978): testing the scale with natural seawaters. IEEE J Oceanic Eng 14:265–267. CrossRefGoogle Scholar
  16. Hines ME, Evans RS, Genthner BRS, Willis SG, Friedman S, Rooney-Verga JN, Devereux R (1999) Molecular phylogenetic and biogeochemical studies of Sulfate reducing bacteria in the rhizosphere of Spartina alterniflora. Appl Environ Microbiol 65:2209–2216PubMedPubMedCentralGoogle Scholar
  17. Jørgensen BB (1983) Processes at the sediment water interface. In: Bolin B, Cook RB (eds) The major biochemical cycles and their interactions. Wiley, Chichester, pp 447–515Google Scholar
  18. Karr EA, Sattley WM, Rice MR, Jung DO, Madigan MT, Achenbach LA (2005) Diversity and distribution of sulfate-reducing bacteria in permanently frozen LakeFryxell McMurdo Dry Valleys Antarctica. Appl Environ Microbiol 71:6353–6359. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Köpke B, Wilms R, Engelen B, Cypionka H, Sass H (2005) Microbial diversity in coastal subsurface sediments: a cultivation approach using various electron acceptors and substrate gradients. Appl Environ Microbiol 71:7819–7830. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Llobet-Brossa E, Rabus R, Bötcher ME, Könneke M, Finke N, Schramm A (2002) Community structure and activity of sulfate reducing bacteria in an inter tidal surface sediment: a multi-method approach. Aquat Microbiol Ecol 29:221–226. CrossRefGoogle Scholar
  21. Manabu F, Susumu T (1996) Microdistribution of sulfate-reducing bacteria in sediments of a hypertrophic lake and their response to the addition of organic matter. Ecol Res 11:257–267CrossRefGoogle Scholar
  22. Mohanty PK, Panda B (2009) Circulation & mixing processes in Chilika Lagoon. Indian J Mar Sci 38:205–214.
  23. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedPubMedCentralGoogle Scholar
  24. Sahm K, MacGregor BJ, Jorgensen B, Stahl DA (1999) Sulfate reduction and vertical distribution of sulfate reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine sediment. Environ Microbiol 1:56–74. CrossRefGoogle Scholar
  25. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467. CrossRefPubMedGoogle Scholar
  26. Schink B, Stams AJ (2013) Syntrophism among prokaryotes. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E , Thompson T (eds) The Prokaryotes-Prokaryotic Communities and Ecophysiology. Springer, Berlin, pp 471–493CrossRefGoogle Scholar
  27. Stahl DA, Fishbain S, Klein M, Baker BJ, Wanger W (2002) Origins and diversification of Sulfate-respiring microorganisms. Antonie Leeuwenhoek 81:189–195CrossRefGoogle Scholar
  28. Sucharita K, Sasikala C, Ramana CV (2010) Thiorhodococcus modestalkaliphilus sp. nov. a phototrophic gamma proteobacterium from Chilika salt water lagoon, India. J Gen Appl Microbiol 56:93–99. CrossRefPubMedGoogle Scholar
  29. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Tanimoto Y, Bak F (1994) Anaerobic degradation of methylmercaptan and dimethyl sulfide by newly isolated thermophilic sulfate reducing bacteria. Appl Environ Microbiol 60:2450–2455PubMedPubMedCentralGoogle Scholar
  31. Teske A, Ramsingh NB, Habicht K, Fukui M, Kuver J, Jorgensen BB, CohenY (1998) Sulfate reducing bacteria and their activities in cyanobacterial mats of Solar lake(Sinai, Egypt). Appl Environ Microbiol 64:2943–2951PubMedPubMedCentralGoogle Scholar
  32. Throckmorton HM, Heikoop JM, Newman BD, Altmann GL, Conrad MS, Muss JD, Wilson CJ (2015) Pathways and transformations of dissolved methane and dissolved inorganic carbon in Arctic tundra watersheds: Evidence from analysis of stable isotopes. Glob Biogeochem Cycles 29:1893–1910. CrossRefGoogle Scholar
  33. Wanger M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982Google Scholar
  34. Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, TrIn Balows AHG, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, New York, pp 3352–3378. CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • Sri Sasi Jyothsna Tadinada
    • 1
    • 3
    Email author
  • Rahul Kamidi
    • 1
    • 4
  • Saikat Dutta
    • 3
  • Sasikala Chintalapati
    • 1
  • Venkata Ramana Chintalapati
    • 2
  1. 1.Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and TechnologyJawaharlal Nehru Technological UniversityHyderabadIndia
  2. 2.Department of Plant Sciences, School of Life ScienceUniversity of HyderabadHyderabadIndia
  3. 3.Environmental ConsultancyRamky Enviro Services Private LimitedHyderabadIndia
  4. 4.Central Sericultural Research and Training InstituteCentral Silk BoardBerhamporeIndia

Personalised recommendations