Advertisement

3 Biotech

, 9:63 | Cite as

The draft genome sequence of Clostridium sp. strain CT7, an isolate capable of producing butanol but not acetone and 1,3-propanediol from crude glycerol

  • Jiasheng Lu
  • Tianpeng Chen
  • Yujia Jiang
  • Wenming Zhang
  • Weiliang Dong
  • Jie Zhou
  • Jiangfeng Ma
  • Yan Fang
  • Min JiangEmail author
  • Fengxue XinEmail author
Genome Reports
  • 14 Downloads

Abstract

A solventogenic Clostridium sp. strain CT7 which could utilize glycerol directly to produce high yields of butanol was isolated. In the presence of crude glycerol, strain CT7 synthesized butanol through a unique butanol–ethanol (BE) fermentation pathway in which acetone and 1,3-propanediol (1,3-PDO) were not produced. The genome of strain CT7 which has a G + C content of 30.3% was estimated to be 5.99 Mb and contained 4319 putative Open Reading Frames (ORF). The putative annotated genes, which play major roles in BE production from crude glycerol, included glycerol dehydrogenase gene (gdh), acetoacetyl-CoA transferase gene (ctfA/B), and bifunctional alcohol and aldehyde dehydrogenase gene (adhE). In addition, non-typical BE production is not coupled to 1,3-propanediol formation, which may due to the defect of 1, 3-PDO dehydrogenase gene (dhaT).

Keywords

Glycerol Butanol Clostridium By-products AdhE Draft genome sequencing 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21706125, 21727818, 21706124, and 31700092), the Jiangsu Province Natural Science Foundation for Youths (BK20170993, BK20170997), the Key Science and Technology Project of Jiangsu Province (BE2016389), and the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (XTE1840).

Compliance with ethical standards

Conflict of interest

The authors have declared there was no conflict of interest.

References

  1. Bhandiwad A, Guseva A, Lynd L (2013) Metabolic engineering of Thermoanaerobacterium thermosaccharolyticum for increased n-butanol production. Adv Microbiol 3:46CrossRefGoogle Scholar
  2. Delcher AL, Bratke KA, Powers EC (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679PubMedPubMedCentralCrossRefGoogle Scholar
  3. Huang D, Wang R, Du W, Wang G, Xia M (2015) Activation of glycerol metabolic pathway by evolutionary engineering of Rhizopus oryzae, to strengthen the fumaric acid biosynthesis from crude glycerol. Bioresour Technol 196:263–272PubMedCrossRefGoogle Scholar
  4. Jiang Y, Xu C, Dong F, Yang Y, Jiang W, Yang S (2009) Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab Eng 11:284–291PubMedCrossRefGoogle Scholar
  5. Jiang Y, Liu J, Dong W, Zhang W, Fang Y, Ma J, Jiang M, Xin F (2017) The draft genome sequence of Thermophilic Thermoanaerobacterium thermosaccharolyticum M5 capable of directly producing butanol from hemicellulose. Curr Microbiol 15:1–4Google Scholar
  6. Jiang Y, Zhang T, Lu JS, Dürre P, Zhang WM, Dong WL, Zhou J, Jiang M, Xin FX (2018) Microbial co-culturing systems: butanol production from organic wastes through consolidated bioprocessing. Appl Microbiol Biot 102:5419–5425CrossRefGoogle Scholar
  7. Jiménez-Bonilla P, Wang Y (2017) In situ biobutanol recovery from clostridial fermentations: a critical review. Crit Rev in Biotechnol 38:1–14Google Scholar
  8. Lee S, Park J, Jang S, Nielsen L, Kim J, Jung K (2010) Fermentative butanol production by clostridia. Biotechnol Bioeng 101:209–228CrossRefGoogle Scholar
  9. Lo J, Zheng T, Hon S, Olson DG, Lynd LR (2015) The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is necessary for ethanol production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. J Bacteriol 197:1386–1393PubMedPubMedCentralCrossRefGoogle Scholar
  10. Millat T, Voigt C, Janssen H (2014) Coenzyme A-transferase-independent butyrate re-assimilation in Clostridium acetobutylicum—evidence from a mathematical model. Appl Microbiol biot 98:9059–9072CrossRefGoogle Scholar
  11. Sarchami T, Rehmann L (2014) Optimizing enzymatic hydrolysis of inulin from Jerusalem artichoke tubers for fermentative butanol production. Biomass Bioenerg 69:175–182CrossRefGoogle Scholar
  12. Sarchami T, Munch G, Johnson E, Kieblich S, Rehmann L (2016) A review of process-design challenges for industrial fermentation of butanol from crude glycerol by non-biphasic Clostridium pasteurianum. Fermentation 2:2CrossRefGoogle Scholar
  13. Sedlar K, Kolek J, Skutkova H, Branska B, Provaznik I, Patakova P (2015) Complete genome sequence of Clostridium pasteurianum NRRL B-598, a non-type strain producing butanol. J Biotechnol 214:113–114PubMedCrossRefGoogle Scholar
  14. Shanmugam S, Hari A, Ulaganathan P, Yang F, Krishnaswamy S, Wu YR (2018a) Potential of biohydrogen generation using the delignified lignocellulosic biomass by a newly identified thermostable laccase from Trichoderma asperellum strain BPLMBT1. Int J Hydrog Energy 43:361–3628CrossRefGoogle Scholar
  15. Shanmugam S, Sun C, Zeng X, Wu YR (2018b) High-efficient production of biobutanol by a novel Clostridium sp. strain WST with uncontrolled pH strategy. Bioresour Technol 256:543–547PubMedCrossRefGoogle Scholar
  16. Sun C, Zhang S, Xin FX, Shanmugam S, Wu YR (2018) Genomic comparison of Clostridium species with the potential of utilizing red algal biomass for biobutanol production. Biotechnol Biofuels 11(1):42PubMedPubMedCentralCrossRefGoogle Scholar
  17. Taconi KA, Venkataramanan KP, Johnson DT (2009) Growth and solvent production by Clostridium pasteurianum ATCC® 6013™ utilizing biodiesel- derived crude glycerol as the sole carbon source. Environ Prog Sustain 28:100–110CrossRefGoogle Scholar
  18. Wang Y, Li X, Blaschek HP (2013) Effects of supplementary butyrate on butanol production and the metabolic switch in Clostridium beijerinckii NCIMB 8052: genome-wide transcriptional analysis with rna-sEq. Biotechnol Biofuels 6(1):138PubMedPubMedCentralCrossRefGoogle Scholar
  19. Xin F, Wang C, Dong W, Zhang W, Wu H, Ma J, Jiang M (2016) Comprehensive investigations of biobutanol production by a non-acetone and 1,3-propanediol generating Clostridium strain from glycerol and polysaccharides. Biotechnol Biofuels 9:220PubMedPubMedCentralCrossRefGoogle Scholar
  20. Xin F, Chen T, Jiang Y, Dong W, Zhang W, Zhang M, Wu H, Ma J, Jiang M (2017) Strategies for improved isopropanol-butanol production by a Clostridium strain from glucose and hemicellulose through consolidated bioprocessing. Biotechnol Biofuels 10:118PubMedPubMedCentralCrossRefGoogle Scholar
  21. Yu L, Zhao J, Xu M, Dong J, Varghese S, Yu M, Tang I, Yang S (2015) Metabolic engineering of Clostridium tyrobutyricum for n-butanol production: effects of CoA transferase. Appl Microbiol biot 99:4917–4930CrossRefGoogle Scholar
  22. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • Jiasheng Lu
    • 1
  • Tianpeng Chen
    • 1
  • Yujia Jiang
    • 1
  • Wenming Zhang
    • 1
    • 2
  • Weiliang Dong
    • 1
    • 2
  • Jie Zhou
    • 1
  • Jiangfeng Ma
    • 1
    • 2
  • Yan Fang
    • 1
    • 2
  • Min Jiang
    • 1
    • 2
    Email author
  • Fengxue Xin
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingPeople’s Republic of China
  2. 2.Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech UniversityNanjingPeople’s Republic of China

Personalised recommendations