3 Biotech

, 9:49 | Cite as

Overexpressing wheat low-molecular-weight glutenin subunits in rice (Oryza sativa L. japonica cv. Koami) seeds

  • Kyoungwon Cho
  • Yeong-Min Jo
  • Sun-Hyung Lim
  • Joo Yeol Kim
  • Oksoo Han
  • Jong-Yeol LeeEmail author
Original Article


Genes encoding wheat low-molecular-weight glutenin subunits (LMW-GSs) that confer dough strength and extensibility were previously identified from Korean wheat cultivars. To improve low viscoelasticity of rice (Oryza sativa L.) dough caused by the lack of seed storage proteins comparable to wheat gluten, two genes, LMW03 and LMW28, encoding LMW-GSs are cloned from Korean wheat cultivar Jokyoung. The LMW genes are inserted into binary vectors under the control of the rice endosperm-specific Glu-B1 promoter. Transgenic rice plants expressing LMW03 or LMW28 in their seeds are generated using Agrobacterium-mediated transformation. The expression of recombinant wheat LMW-GS in the transgenic rice seeds was confirmed by SDS-PAGE and immunoblot analysis. Their accumulation in the endosperm and aleurone layers of rice seeds was observed through in situ immuno-hybridization.


Low-molecular-weight glutenin subunit Transgenic rice Wheat Seed storage protein 



This work was supported by grants from the National Institute of Agricultural Science (RDA PJ012458) and the Next-Generation BioGreen 21 Program (RDA PJ013149 and RDA PJ013159), South Korea. This study was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A6A3A11931182) to KC.

Author contributions

YMJ designed and conducted the experiments; KC conducted the experiments and wrote the manuscript; SHL, JYK, and OH contributed critical reading and revision of the manuscript; JYL contributed scientific advice and corrected the manuscript. All authors have read and approved the manuscript.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. Altpeter F, Popelka JC, Wieser H (2004) Stable expression of 1Dx5 and 1Dy10 high-molecular-weight glutenin subunit genes in transgenic rye drastically increases the polymeric glutelin fraction in rye flour. Plant Mol Biol 54(6):783–792. PubMedCrossRefGoogle Scholar
  2. Beom H-R, Kim JS, Jang Y-R, Lim S-H, Kim C-K, Lee CK, Lee J-Y (2018) Proteomic analysis of low-molecular-weight glutenin subunits and relationship with their genes in a common wheat variety. 3 Biotech 8(1):56PubMedPubMedCentralCrossRefGoogle Scholar
  3. Cameron-Mills V, Brandt A (1988) A gamma-hordein gene. Plant Mol Biol (4):449–461.
  4. Cho K, Lee H-J, Jo Y-M, Lim S-H, Rakwal R, Lee J-Y, Kim Y-M (2016) RNA interference-mediated simultaneous suppression of seed storage proteins in rice grains. Front Plant Sci 7:1624PubMedPubMedCentralGoogle Scholar
  5. Cho K, Beom H-R, Jang Y-R, Altenbach S, Vensel WH, Simon-Buss A, Lim S-H, Kim MG, Kim JS, Lee J-Y (2018) Proteomic profiling and epitope analysis of the complex α-, γ-and ω-gliadin families in a commercial bread wheat. Front Plant Sci 9:818PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cornish GB, Bekes F, Allen H, Martin D (2001) Flour proteins linked to quality traits in an Australian doubled haploid wheat population. Aust J Agric Res 52(12):1339–1348CrossRefGoogle Scholar
  7. D’Ovidio R, Masci S (2004) The low-molecular-weight glutenin subunits of wheat gluten. J Cereal Sci 39(3):321–339CrossRefGoogle Scholar
  8. Delcour JA, Joye IJ, Pareyt B, Wilderjans E, Brijs K, Lagrain B (2012) Wheat gluten functionality as a quality determinant in cereal-based food products. Annu Rev Food Sci Technol 3:469–492PubMedCrossRefGoogle Scholar
  9. Dong L, Zhang X, Liu D, Fan H, Sun J, Zhang Z, Qin H, Li B, Hao S, Li Z (2010) New insights into the organization, recombination, expression and functional mechanism of low molecular weight glutenin subunit genes in bread wheat. PLoS One 5(10):e13548PubMedPubMedCentralCrossRefGoogle Scholar
  10. Gadaleta A, Blechl AE, Nguyen S, Cardone MF, Ventura M, Quick JS, Blanco A (2008) Stably expressed d-genome-derived HMW glutenin subunit genes transformed into different durum wheat genotypes change dough mixing properties. Mol Breed 22(2):267–279. CrossRefGoogle Scholar
  11. Gao S, Gu YQ, Wu J, Coleman-Derr D, Huo N, Crossman C, Jia J, Zuo Q, Ren Z, Anderson OD, Kong X (2007) Rapid evolution and complex structural organization in genomic regions harboring multiple prolamin genes in the polyploid wheat genome. Plant Mol Biol 65(1–2):189–203. PubMedCrossRefGoogle Scholar
  12. Gupta RB, Shepherd K (1990) Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutelin. Theor Appl Genet 80(1):65–74PubMedCrossRefGoogle Scholar
  13. Gupta RB, Singh NK, Shepherd K (1989) The cumulative effect of allelic variation in LMW and HMW glutenin subunits on dough properties in the progeny of two bread wheats. Theor Appl Genet 77(1):57–64PubMedCrossRefGoogle Scholar
  14. Jeong N, Jeon S-H, Kim D-Y, Lee C, Ok H-C, Park K-D, Hong H-C, Lee S-S, Moon J-K, Park S-K (2016) Development of marker-free TaGlu-Ax1 transgenic rice harboring a wheat high-molecular-weight glutenin Subunit (HMW-GS) protein. J Life Sci 26(10):1121–1129CrossRefGoogle Scholar
  15. Jo Y-M, Cho K, Lee H-J, Lim S-H, Kim JS, Kim Y-M, Lee J-Y (2017) Cellular localization of wheat high molecular weight glutenin subunits in transgenic rice grain. Int J Mol Sci 18(11):2458PubMedCentralCrossRefGoogle Scholar
  16. Karimi M, Inze D, Depicker A (2002) GATEWAY((TM)) vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7(5):193–195. PubMedCrossRefGoogle Scholar
  17. Kawakatsu T, Yamamoto MP, Hirose S, Yano M, Takaiwa F (2008) Characterization of a new rice glutelin gene GluD-1 expressed in the starchy endosperm. J Exp Bot 59(15):4233–4245. PubMedPubMedCentralCrossRefGoogle Scholar
  18. Kawakatsu T, Hirose S, Yasuda H, Takaiwa F (2010) Reducing rice seed storage protein accumulation leads to changes in nutrient quality and storage organelle formation. Plant Physiol 154(4):1842–1854. PubMedPubMedCentralCrossRefGoogle Scholar
  19. Kim Y-M, Lee J-Y, Yoon U-H, Choi S-B, Ha S-H, Lim S-H (2011) New design of rice seed storage proteins. J Plant Biotechnol 38(4):263–271CrossRefGoogle Scholar
  20. Kim Y-M, Lee J-Y, Lee T, Lee Y-H, Kim S-H, Kang S-H, Yoon U-H, Ha S-H, Lim S-H (2012) The suppression of the glutelin storage protein gene in transgenic rice seeds results in a higher yield of recombinant protein. Plant Biotechnol Rep 6(4):347–353CrossRefGoogle Scholar
  21. Koehler P, Wieser H (2013) Chemistry of cereal grains. In: Gobbetti M, Gänzle M (eds) Handbook on sourdough biotechnology. Springer, Boston, pp 11–45. CrossRefGoogle Scholar
  22. Kohler P, Belitz HD, Wieser H (1993) Disulphide bonds in wheat gluten: further cystine peptides from high molecular weight (HMW) and low molecular weight (LMW) subunits of glutenin and from gamma-gliadins. Z Lebensm Unters Forsch 196(3):239–247PubMedCrossRefGoogle Scholar
  23. Kreis M, Forde BG, Rahman S, Miflin BJ, Shewry PR (1985) Molecular evolution of the seed storage proteins of barley, rye and wheat. J Mol Biol 183(3):499–502PubMedCrossRefGoogle Scholar
  24. Lee J-Y, Kim Y-T, Kim B-M, Lee J-H, Lim S-H, Ha S-H, Ahn S-N, Nam M-H, Kim Y-M (2010) Cloning of low-molecular-weight glutenin subunit genes and identification of their protein products in common wheat (Triticum aestivum L.). Korean J Breed Sci 42(5):547–554Google Scholar
  25. Lee HJ, Jo YM, Lee JY, Lim SH, Kim YM (2015) Lack of globulin synthesis during seed development alters accumulation of seed storage proteins in rice. Int J Mol Sci 16(7):14717–14736. PubMedPubMedCentralCrossRefGoogle Scholar
  26. Lee JY, Beom HR, Altenbach SB, Lim SH, Kim YT, Kang CS, Yoon UH, Gupta R, Kim ST, Ahn SN, Kim YM (2016) Comprehensive identification of LMW-GS genes and their protein products in a common wheat variety. Funct Integr Genom 16(3):269–279. CrossRefGoogle Scholar
  27. Motoyama T, Maruyama N, Amari Y, Kobayashi K, Washida H, Higasa T, Takaiwa F, Utsumi S (2009) α′ Subunit of soybean β-conglycinin forms complex with rice glutelin via a disulphide bond in transgenic rice seeds. J Exp Bot 60(14):4015–4027PubMedPubMedCentralCrossRefGoogle Scholar
  28. Okita TW, Cheesbrough V, Reeves CD (1985) Evolution and heterogeneity of the alpha-/beta-type and gamma-type gliadin DNA sequences. J Biol Chem 260(13):8203–8213PubMedGoogle Scholar
  29. Orsi A, Sparvoli F, Ceriotti A (2001) Role of individual disulfide bonds in the structural maturation of a low molecular weight glutenin subunit. J Biol Chem 276(34):32322–32329PubMedCrossRefGoogle Scholar
  30. Oszvald M, Jenes B, Tömösközi S, Bekes F, Tamas L (2007) Expression of the 1D × 5 high molecular weight glutenin subunit protein in transgenic rice. Cereal Res Commun 35(4):1543–1549CrossRefGoogle Scholar
  31. Oszvald M, Balázs G, Pólya S, Tömösközi S, Békés F, Tamás L (2013) Wheat storage proteins in transgenic rice endosperm. J Agric Food Chem 61(31):7606–7614PubMedCrossRefGoogle Scholar
  32. Park S-K, Shin D, Hwang W-H, Hur Y-J, Kim T-H, Oh S-Y, Cho J-H, Han S-I, Lee S-S, Nam M-H (2014) Development of marker-free transgenic rice expressing the wheat storage protein, Glu-1Dy10, for increasing quality processing of bread and noodles. J Life Sci 24(6):618–625CrossRefGoogle Scholar
  33. Payne PI (1987) Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu Rev Plant Physiol 38(1):141–153CrossRefGoogle Scholar
  34. Popineau Y, Deshayes G, Lefebvre J, Fido R, Tatham AS, Shewry PR (2001) Prolamin aggregation, gluten viscoelasticity, and mixing properties of transgenic wheat lines expressing 1Ax and 1Dx high molecular weight glutenin subunit transgenes. J Agric Food Chem 49(1):395–401PubMedCrossRefGoogle Scholar
  35. Qian D, Tian L, Qu L (2015) Proteomic analysis of endoplasmic reticulum stress responses in rice seeds. Sci Rep 5:14255PubMedPubMedCentralCrossRefGoogle Scholar
  36. Qu LQ, Xing YP, Liu WX, Xu XP, Song YR (2008) Expression pattern and activity of six glutelin gene promoters in transgenic rice. J Exp Bot 59(9):2417–2424. PubMedCentralCrossRefGoogle Scholar
  37. Rasheed A, Xia XC, Yan YM, Appels R, Mahmood T, He ZH (2014) Wheat seed storage proteins: advances in molecular genetics, diversity and breeding applications. J Cereal Sci 60(1):11–24. CrossRefGoogle Scholar
  38. Rooke L, Bekes F, Fido R, Barro F, Gras P, Tatham AS, Barcelo P, Lazzeri P, Shewry PR (1999) Overexpression of a gluten protein in transgenic wheat results in greatly increased dough strength. J Cereal Sci 30(2):115–120. doi: CrossRefGoogle Scholar
  39. Shin M (2009) Rice-processed food. Food Sci Ind 42:2–18Google Scholar
  40. Shyur L-F, Wen T-N, Chen C-S (1994) Purification and characterization of rice prolamins. Bot Bull Acad Sin 35:65–71Google Scholar
  41. Sivaramakrishnan HP, Senge B, Chattopadhyay PK (2004) Rheological properties of rice dough for making rice bread. J Food Eng 62(1):37–45. CrossRefGoogle Scholar
  42. Takaiwa F, Wakasa Y, Takagi H, Hiroi T (2015) Rice seed for delivery of vaccines to gut mucosal immune tissues. Plant biotechnol J 13(8):1041–1055PubMedCrossRefGoogle Scholar
  43. Tosi P, Parker M, Gritsch CS, Carzaniga R, Martin B, Shewry PR (2009) Trafficking of storage proteins in developing grain of wheat. J Exp Bot 60(3):979–991PubMedPubMedCentralCrossRefGoogle Scholar
  44. Wakasa Y, Yasuda H, Takaiwa F (2013) Secretory type of recombinant thioredoxin h induces ER stress in endosperm cells of transgenic rice. J Plant Physiol 170(2):202–210PubMedCrossRefGoogle Scholar
  45. Wang Y, Zhen S, Luo N, Han C, Lu X, Li X, Xia X, He Z, Yan Y (2016) Low molecular weight glutenin subunit gene Glu-B3h confers superior dough strength and breadmaking quality in wheat (Triticum aestivum L.). Sci Rep 6:27182PubMedPubMedCentralCrossRefGoogle Scholar
  46. Xu JH, Messing J (2009) Amplification of prolamin storage protein genes in different subfamilies of the Poaceae. Theor Appl Genet 119(8):1397–1412. PubMedCrossRefGoogle Scholar
  47. Yamagata H, Tanaka K (1986) The site of synthesis and accumulation of rice storage proteins. Plant Cell Physiol 27(1):135–145Google Scholar
  48. Zhang X, Jin H, Zhang Y, Liu D, Li G, Xia X, He Z, Zhang A (2012) Composition and functional analysis of low-molecular-weight glutenin alleles with Aroona near-isogenic lines of bread wheat. BMC Plant Biol 12:243. PubMedPubMedCentralCrossRefGoogle Scholar
  49. Zhang XF, Liu DC, Zhang JH, Jiang W, Luo GB, Yang WL, Sun JZ, Tong YP, Cui DQ, Zhang AM (2013) Novel insights into the composition, variation, organization, and expression of the low-molecular-weight glutenin subunit gene family in common wheat. J Exp Bot 64(7):2027–2040. PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • Kyoungwon Cho
    • 1
    • 2
  • Yeong-Min Jo
    • 1
  • Sun-Hyung Lim
    • 1
  • Joo Yeol Kim
    • 1
  • Oksoo Han
    • 2
  • Jong-Yeol Lee
    • 1
    Email author
  1. 1.National Institute of Agricultural Science, RDAChonjuSouth Korea
  2. 2.Department of Biotechnology, College of Agriculture and Life SciencesChonnam National UniversityGwangjuSouth Korea

Personalised recommendations