Advertisement

3 Biotech

, 9:57 | Cite as

Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics

  • Kuldeep Mahato
  • Sahil Nagpal
  • Mahero Ayesha Shah
  • Ananya Srivastava
  • Pawan Kumar Maurya
  • Shounak Roy
  • Amit Jaiswal
  • Renu Singh
  • Pranjal ChandraEmail author
Review Article
  • 80 Downloads

Abstract

Gold nanoparticles (AuNPs) have found a wide range of biomedical and environmental monitoring applications (viz. drug delivery, diagnostics, biosensing, bio-imaging, theranostics, and hazardous chemical sensing) due to their excellent optoelectronic and enhanced physico-chemical properties. The modulation of these properties is done by functionalizing them with the synthesized AuNPs with polymers, surfactants, ligands, drugs, proteins, peptides, or oligonucleotides for attaining the target specificity, selectivity and sensitivity for their various applications in diagnostics, prognostics, and therapeutics. This review intends to highlight the contribution of such AuNPs in state-of-the-art ventures of diverse biomedical applications. Therefore, a brief discussion on the synthesis of AuNPs has been summarized prior to comprehensive detailing of their surface modification strategies and the applications. Here in, we have discussed various ways of AuNPs functionalization including thiol, phosphene, amine, polymer and silica mediated passivation strategies. Thereafter, the implications of these passivated AuNPs in sensing, surface-enhanced Raman spectroscopy (SERS), bioimaging, drug delivery, and theranostics have been extensively discussed with the a number of illustrations.

Keywords

Gold nanoparticles Synthesis approaches Surface functionalization strategies Biomedical applications 

Notes

Acknowledgements

This work is supported by Science and Engineering Research Board (SERB) project file no. ECR/2016/000100.

Compliance with ethical standards

Conflict of interest

Authors report no conflict of interest in this work.

References

  1. Abalde-Cela S, Taladriz-Blanco P, de Oliveira MG, Abell C (2018) Droplet microfluidics for the highly controlled synthesis of branched gold nanoparticles. Sci Rep 8(1):2440PubMedPubMedCentralCrossRefGoogle Scholar
  2. Agrawal B, Chandra P, Goyal RN, Shim Y-B (2013) Detection of norfloxacin and monitoring its effect on caffeine catabolism in urine samples. Biosens Bioelectron 47:307–312.  https://doi.org/10.1016/j.bios.2013.03.025 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Akhtar MH, Hussain KK, Gurudatt NG, Chandra P, Shim Y-B (2018) Ultrasensitive dual probe immunosensor for the monitoring of nicotine induced-brain derived neurotrophic factor released from cancer cells. Biosens Bioelectron 116:108–115.  https://doi.org/10.1016/j.bios.2018.05.049 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Akhter S, Ahmad MZ, Ahmad FJ, Storm G, Kok RJ (2012) Gold nanoparticles in theranostic oncology: current state-of-the-art. Expert Opin Drug Deliv 9(10):1225–1243PubMedCrossRefPubMedCentralGoogle Scholar
  5. Alex S, Tiwari A (2015) Functionalized gold nanoparticles: synthesis, properties and applications—a review. J Nanosci Nanotechnol 15(3):1869–1894PubMedCrossRefPubMedCentralGoogle Scholar
  6. Aqil A, Qiu H, Greisch J-F, Jérôme R, De Pauw E, Jérôme C (2008) Coating of gold nanoparticles by thermosensitive poly (N-isopropylacrylamide) end-capped by biotin. Polymer 49(5):1145–1153CrossRefGoogle Scholar
  7. Ascencio JA, Pérez M, José-Yacamán M (2000) A truncated icosahedral structure observed in gold nanoparticles. Sur Sci 447(1):73–80CrossRefGoogle Scholar
  8. Aslam M, Fu L, Su M, Vijayamohanan K, Dravid VP (2004) Novel one-step synthesis of amine-stabilized aqueous colloidal gold nanoparticles. J Mater Chem 14(12):1795–1797CrossRefGoogle Scholar
  9. Balasubramanian R, Kim B, Tripp SL, Wang X, Lieberman M, Wei A (2002) Dispersion and stability studies of resorcinarene-encapsulated gold nanoparticles. Langmuir 18(9):3676–3681CrossRefGoogle Scholar
  10. Baranwal A, Chandra P (2018) Clinical implications and electrochemical biosensing of monoamine neurotransmitters in body fluids, in vitro, in vivo, and ex vivo models. Biosens Bioelectron 121:137–152.  https://doi.org/10.1016/j.bios.2018.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Baranwal A, Mahato K, Srivastava A, Maurya PK, Chandra P (2016) Phytofabricated metallic nanoparticles and their clinical applications. RSC Adv 6(107):105996–106010CrossRefGoogle Scholar
  12. Baranwal A, Kumar A, Priyadharshini A, Oggu GS, Bhatnagar I, Srivastava A, Chandra P (2018a) Chitosan: an undisputed bio-fabrication material for tissue engineering and bio-sensing applications. Int J Biol Macromol 110:110–123.  https://doi.org/10.1016/j.ijbiomac.2018.01.006 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Baranwal A, Srivastava A, Kumar P, Bajpai VK, Maurya PK, Chandra P (2018b) Prospects of nanostructure materials and their composites as antimicrobial agents. Front Microbiol 9:422PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bellamy TC, Garthwaite J (2001) Sub-second kinetics of the nitric oxide receptor, soluble guanylyl cyclase, in intact cerebellar cells. J Biol Chem 276(6):4287–4292PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bhatnagar I, Mahato K, Ealla KKR, Asthana A, Chandra P (2018) Chitosan stabilized gold nanoparticle mediated self-assembled gliP nanobiosensor for diagnosis of invasive aspergillosis. Int J Biol Macromol 110:449–456.  https://doi.org/10.1016/j.ijbiomac.2017.12.084 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43(3):744–764PubMedCrossRefPubMedCentralGoogle Scholar
  17. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941.  https://doi.org/10.1038/nbt.3330 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Boal AK, Rotello VM (2000) Fabrication and self-optimization of multivalent receptors on nanoparticle scaffolds. J Amer Chem Soc 122(4):734–735CrossRefGoogle Scholar
  19. Boca S, Leordean C, Astilean S, Farcau C (2015) Chemiresistive/SERS dual sensor based on densely packed gold nanoparticles. Beilstein J Nanotechnol 6(1):2498–2503PubMedPubMedCentralCrossRefGoogle Scholar
  20. Braun GB, Pallaoro A, Wu G, Missirlis D, Zasadzinski JA, Tirrell M, Reich NO (2009) Laser-activated gene silencing via gold nanoshell—siRNA conjugates. ACS Nano 3(7):2007–2015PubMedCrossRefPubMedCentralGoogle Scholar
  21. Briley WE, Bondy MH, Randeria PS, Dupper TJ, Mirkin CA (2015) Quantification and real-time tracking of RNA in live cells using sticky-flares. Proc Natl Acad Sci 112(31):9591–9595PubMedCrossRefPubMedCentralGoogle Scholar
  22. Brown HC, Kim S, Krishnamurthy S (1980) Selective reductions. 26. Lithium triethylborohydride as an exceptionally powerful and selective reducing agent in organic synthesis. Exploration of the reactions with selected organic compounds containing representative functional groups. J Org Chem 45(1):1–12CrossRefGoogle Scholar
  23. Brust M, Fink J, Bethell D, Schiffrin D, Kiely C (1995) Synthesis and reactions of functionalised gold nanoparticles. J Chem Soc Chem Commun. (16):1655–1656Google Scholar
  24. Catherine L, Olivier P (2017) Gold nanoparticles for physics, chemistry and biology. World ScientificGoogle Scholar
  25. Chandra P (2013) Advances in clinical diagnosis through electrochemical aptamer sensors. J Bioanal Biomed 5:e119.  https://doi.org/10.4172/1948-593X.1000e119 CrossRefGoogle Scholar
  26. Chandra P (2015) Electrochemical nanobiosensors for cancer diagnosis. J Anal Bioanal Tech 6(1):e119Google Scholar
  27. Chandra P (2016) Nanobiosensors for personalized and onsite biomedical diagnosis. IET, LondonCrossRefGoogle Scholar
  28. Chandra P, Das D, Abdelwahab AA (2010) Gold nanoparticles in molecular diagnostics and therapeutics. Digest J Nanomater Biostructures (DJNB) 5(2)Google Scholar
  29. Chandra P, Noh H-B, Won M-S, Shim Y-B (2011a) Detection of daunomycin using phosphatidylserine and aptamer co-immobilized on Au nanoparticles deposited conducting polymer. Biosens Bioelectron 26(11):4442–4449.  https://doi.org/10.1016/j.bios.2011.04.060 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Chandra P, Zaidi SA, Noh H-B, Shim Y-B (2011b) Separation and simultaneous detection of anticancer drugs in a microfluidic device with an amperometric biosensor. Biosens Bioelectron 28(1):326–332PubMedCrossRefPubMedCentralGoogle Scholar
  31. Chandra P, Koh WCA, Noh H-B, Shim Y-B (2012) In vitro monitoring of i-NOS concentrations with an immunosensor: the inhibitory effect of endocrine disruptors on i-NOS release. Biosens Bioelectron 32(1):278–282.  https://doi.org/10.1016/j.bios.2011.11.027 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Chandra P, Noh H-B, Shim Y-B (2013a) Cancer cell detection based on the interaction between an anticancer drug and cell membrane components. Chem Commun 49(19):1900–1902CrossRefGoogle Scholar
  33. Chandra P, Singh J, Singh A, Srivastava A, Goyal RN, Shim YB (2013b) Gold nanoparticles and nanocomposites in clinical diagnostics using electrochemical methods. J Nanopart 2013:12.  https://doi.org/10.1155/2013/535901
  34. Chen S, Kimura K (1999) Synthesis and characterization of carboxylate-modified gold nanoparticle powders dispersible in water. Langmuir 15(4):1075–1082CrossRefGoogle Scholar
  35. Chen Y-M, Yu C-J, Cheng T-L, Tseng W-L (2008) Colorimetric detection of lysozyme based on electrostatic interaction with human serum albumin-modified gold nanoparticles. Langmuir 24(7):3654–3660PubMedCrossRefPubMedCentralGoogle Scholar
  36. Chen W-H, Xu X-D, Jia H-Z, Lei Q, Luo G-F, Cheng S-X, Zhuo R-X, Zhang X-Z (2013) Therapeutic nanomedicine based on dual-intelligent functionalized gold nanoparticles for cancer imaging and therapy in vivo. Biomaterials 34(34):8798–8807PubMedCrossRefPubMedCentralGoogle Scholar
  37. Chen Y, Fan Z, Zhang Z, Niu W, Li C, Yang N, Chen B, Zhang H (2018) Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chem Rev 118(13):6409–6455.  https://doi.org/10.1021/acs.chemrev.7b00727 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Choudhary M, Yadav P, Singh A, Kaur S, Ramirez-Vick J, Chandra P, Arora K, Singh SP (2016) CD 59 targeted ultrasensitive electrochemical immunosensor for fast and noninvasive diagnosis of oral cancer. Electroanalysis 28(10):2565–2574.  https://doi.org/10.1002/elan.201600238 CrossRefGoogle Scholar
  39. Chowdhury P, Roy B, Mukherjee N, Mukherjee S, Joardar N, Mondal MK, Roy D, Babu SPS (2018) Chitosan biopolymer functionalized gold nanoparticles with controlled cytotoxicity and improved antifilarial efficacy. Adv Compos Hybrid Mater 1–14Google Scholar
  40. Chung S, Chandra P, Koo JP, Shim Y-B (2018) Development of a bifunctional nanobiosensor for screening and detection of chemokine ligand in colorectal cancer cell line. Biosens Bioelectron 100:396–403.  https://doi.org/10.1016/j.bios.2017.09.031 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Craig GA, Allen PJ, Mason MD (2010) Synthesis, characterization, and functionalization of gold nanoparticles for cancer imaging. Cancer Nanotechnol 177–193Google Scholar
  42. Curry T, Kopelman R, Shilo M, Popovtzer R (2014) Multifunctional theranostic gold nanoparticles for targeted CT imaging and photothermal therapy. Contrast Media Mol Imaging 9(1):53–61PubMedCrossRefPubMedCentralGoogle Scholar
  43. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104 (1):293–346.  https://doi.org/10.1021/cr030698+ CrossRefPubMedPubMedCentralGoogle Scholar
  44. Dhas TS, Kumar VG, Abraham LS, Karthick V, Govindaraju K (2012) Sargassum myriocystum mediated biosynthesis of gold nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 99:97–101CrossRefGoogle Scholar
  45. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779PubMedCrossRefPubMedCentralGoogle Scholar
  46. Duan H, Nie S (2007) Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: a new route to fluorescent and water-soluble atomic clusters. J Amer Chem Soc 129(9):2412–2413CrossRefGoogle Scholar
  47. Durr NJ, Larson T, Smith DK, Korgel BA, Sokolov K, Ben-Yakar A (2007) Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 7(4):941–945PubMedPubMedCentralCrossRefGoogle Scholar
  48. Elahi N, Kamali M, Baghersad MH (2018) Recent biomedical applications of gold nanoparticles: a review. Talanta 184:537–556.  https://doi.org/10.1016/j.talanta.2018.02.088 CrossRefPubMedGoogle Scholar
  49. El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5(5):829–834PubMedCrossRefGoogle Scholar
  50. Faraday M (1857) The Bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond 147:145–181CrossRefGoogle Scholar
  51. Felidj N, Aubard J, Levi G, Krenn J, Hohenau A, Schider G, Leitner A, Aussenegg F (2003) Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Appl Phys Lett 82(18):3095–3097CrossRefGoogle Scholar
  52. Filali M, Meier MA, Schubert US, Gohy J-F (2005) Star-block copolymers as templates for the preparation of stable gold nanoparticles. Langmuir 21(17):7995–8000PubMedCrossRefGoogle Scholar
  53. Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliver Rev 60(11):1307–1315CrossRefGoogle Scholar
  54. Giersig M, Mulvaney P (1993) Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 9(12):3408–3413CrossRefGoogle Scholar
  55. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49(19):3280–3294CrossRefGoogle Scholar
  56. Graf C, van Blaaderen A (2002) Metallodielectric colloidal core-shell particles for photonic applications. Langmuir 18(2):524–534CrossRefGoogle Scholar
  57. Han G, You CC, Kim BJ, Turingan RS, Forbes NS, Martin CT, Rotello VM (2006) Light-regulated release of DNA and its delivery to nuclei by means of photolabile gold nanoparticles. Angew Chem 118(19):3237–3241CrossRefGoogle Scholar
  58. He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD (2000) Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Amer Chem Soc 122(38):9071–9077CrossRefGoogle Scholar
  59. Hernandez FJ, Dondapati SK, Ozalp VC, Pinto A, O’Sullivan CK, Klar TA, Katakis I (2009) Label free optical sensor for avidin based on single gold nanoparticles functionalized with aptamers. J Biophotonics 2(4):227–231PubMedCrossRefGoogle Scholar
  60. Higuchi M, Ushiba K, Kawaguchi M (2007) Structural control of peptide-coated gold nanoparticle assemblies by the conformational transition of surface peptides. J Colloid Interface Sci 308(2):356–363PubMedCrossRefPubMedCentralGoogle Scholar
  61. Hong R, Han G, Fernández JM, Kim B-j, Forbes NS, Rotello VM (2006) Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J Amer Chem Soc 128(4):1078–1079CrossRefGoogle Scholar
  62. Hostetler MJ, Templeton AC, Murray RW (1999) Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir 15(11):3782–3789CrossRefGoogle Scholar
  63. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006a) Cancer cell imaging and photothermal therapy in the near-infrared region using gold nanorods. J Amer Chem Soc 128(6):2115–2120CrossRefGoogle Scholar
  64. Huang Y-F, Lin Y-W, Chang H-T (2006b) Growth of various Au–Ag nanocomposites from gold seeds in amino acid solutions. Nanotechnology 17(19):4885CrossRefGoogle Scholar
  65. Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21(48):4880–4910PubMedCrossRefPubMedCentralGoogle Scholar
  66. Huo Q, Worden JG (2007) Monofunctional gold nanoparticles: synthesis and applications. J Nanopart Res 9(6):1013–1025CrossRefGoogle Scholar
  67. Ionita P, Volkov A, Jeschke G, Chechik V (2008) Lateral diffusion of thiol ligands on the surface of Au nanoparticles: an electron paramagnetic resonance study. Anal Chem 80(1):95–106PubMedCrossRefPubMedCentralGoogle Scholar
  68. Isaacs SR, Cutler EC, Park J-S, Lee TR, Shon Y-S (2005) Synthesis of tetraoctylammonium-protected gold nanoparticles with improved stability. Langmuir 21(13):5689–5692PubMedCrossRefPubMedCentralGoogle Scholar
  69. Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318(5849):430–433PubMedCrossRefPubMedCentralGoogle Scholar
  70. Jain PK, El-Sayed IH, El-Sayed MA (2007) Au nanoparticles target cancer. Nano Today 2(1):18–29CrossRefGoogle Scholar
  71. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586PubMedCrossRefPubMedCentralGoogle Scholar
  72. Kamra T, Chaudhary S, Xu C, Montelius L, Schnadt J, Ye L (2016) Covalent immobilization of molecularly imprinted polymer nanoparticles on a gold surface using carbodiimide coupling for chemical sensing. J Colloid Interface Sci 461:1–8.  https://doi.org/10.1016/j.jcis.2015.09.009 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Kanaras AG, Kamounah FS, Schaumburg K, Kiely CJ, Brust M (2002) Thioalkylated tetraethylene glycol: a new ligand for water-soluble monolayer protected gold clusters. Chem Commun 20:2294–2295CrossRefGoogle Scholar
  74. Kang Y, Taton TA (2005) Core/shell gold nanoparticles by self-assembly and crosslinking of micellar, block-copolymer shells. Angew Chem 117(3):413–416CrossRefGoogle Scholar
  75. Kashish BS, Jyoti A, Mahato K, Chandra P, Prakash R (2017) Highly sensitive in vitro biosensor for enterotoxigenic escherichia coli detection based on ssDNA anchored on PtNPs-chitosan nanocomposite. Electroanalysis 29(11):2665–2671.  https://doi.org/10.1002/elan.201600169 CrossRefGoogle Scholar
  76. Khandelia R, Jaiswal A, Ghosh SS, Chattopadhyay A (2014) Polymer coated gold nanoparticle–protein agglomerates as nanocarriers for hydrophobic drug delivery. J Mater Chem B 2(38):6472–6477CrossRefGoogle Scholar
  77. Khlebtsov N, Bogatyrev V, Dykman L, Khlebtsov B, Staroverov S, Shirokov A, Matora L, Khanadeev V, Pylaev T, Tsyganova N (2013) Analytical and theranostic applications of gold nanoparticles and multifunctional nanocomposites. Theranostics 3(3):167–180PubMedPubMedCentralCrossRefGoogle Scholar
  78. Koh WCA, Chandra P, Kim D-M, Shim Y-B (2011) Electropolymerized self-assembled layer on gold nanoparticles: detection of inducible nitric oxide synthase in neuronal cell culture. Anal Chem 83(16):6177–6183PubMedCrossRefPubMedCentralGoogle Scholar
  79. Kotiaho A, Lahtinen R, Efimov A, Lehtivuori H, Tkachenko NV, Kanerva T, Lemmetyinen H (2010) Synthesis and time-resolved fluorescence study of porphyrin-functionalized gold nanoparticles. J Photochem Photobiol 212(2):129–134CrossRefGoogle Scholar
  80. Kumar A, Mandal S, Selvakannan P, Pasricha R, Mandale A, Sastry M (2003) Investigation into the interaction between surface-bound alkylamines and gold nanoparticles. Langmuir 19(15):6277–6282PubMedCrossRefPubMedCentralGoogle Scholar
  81. Kumar SA, Peter Y-A, Nadeau JL (2008) Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnology 19(49):495101PubMedCrossRefPubMedCentralGoogle Scholar
  82. Kumar A, Hens A, Arun RK, Chatterjee M, Mahato K, Layek K, Chanda N (2015) A paper based microfluidic device for easy detection of uric acid using positively charged gold nanoparticles. Analyst 140(6):1817–1821.  https://doi.org/10.1039/C4AN02333A CrossRefPubMedPubMedCentralGoogle Scholar
  83. Kumar A, Sharma S, Pandey LM, Chandra P (2018) Nanoengineered material based biosensing electrodes for enzymatic biofuel cells applications. Mater Sci Energy Technol 1(1):38–48.  https://doi.org/10.1016/j.mset.2018.04.001 CrossRefGoogle Scholar
  84. Kwiatkowska A, Granicka LH, Grzeczkowicz A, Stachowiak R, Bącal P, Sobczak K, Darowski M, Kozarski M, Bielecki J (2018) Gold nanoparticle-modified poly (vinyl chloride) surface with improved antimicrobial properties for medical devices. J Biomed Nanotechnol 14(5):922–932PubMedCrossRefPubMedCentralGoogle Scholar
  85. Lapotko D (2009) Therapy with gold nanoparticles and lasers: what really kills the cells? Nanomedicine 4(3):253–256.  https://doi.org/10.2217/nnm.09.2 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Lazarus GG, Singh M (2016) In vitro cytotoxic activity and transfection efficiency of polyethyleneimine functionalized gold nanoparticles. Colloid Surf B 145:906–911CrossRefGoogle Scholar
  87. Lee J, Park JC, Song H (2008) A Nanoreactor framework of a Au@ SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv Mater 20(8):1523–1528CrossRefGoogle Scholar
  88. Leff DV, Brandt L, Heath JR (1996) Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary amines. Langmuir 12(20):4723–4730CrossRefGoogle Scholar
  89. Lévy R, Wang Z, Duchesne L, Doty RC, Cooper AI, Brust M, Fernig DG (2006) A generic approach to monofunctionalized protein-like gold nanoparticles based on immobilized metal ion affinity chromatography. ChemBioChem 7(4):592–594PubMedCrossRefPubMedCentralGoogle Scholar
  90. Li X-M, de Jong MR, Inoue K, Shinkai S, Huskens J, Reinhoudt DN (2001) Formation of gold colloids using thioether derivatives as stabilizing ligands. J Mater Chem 11(7):1919–1923CrossRefGoogle Scholar
  91. Liedberg B, Nylander C, Lunström I (1983) Surface plasmon resonance for gas detection and biosensing. Sens Actuators 4:299–304CrossRefGoogle Scholar
  92. Liu S, Han MY (2010) Silica-Coated Metal Nanoparticles. Chem An Asian J 5(1):36–45Google Scholar
  93. Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB (1998) Fullerene pipes. Science 280(5367):1253–1256PubMedCrossRefPubMedCentralGoogle Scholar
  94. Liu Y, Shipton MK, Ryan J, Kaufman ED, Franzen S, Feldheim DL (2007) Synthesis, stability, and cellular internalization of gold nanoparticles containing mixed peptide-poly (ethylene glycol) monolayers. Anal Chem 79(6):2221–2229PubMedCrossRefPubMedCentralGoogle Scholar
  95. Liu X-P, Tong J, Yuan Z, Yang Y, Mao C-J, Niu H-L, Jin B-K, Zhang S-Y (2016) Highly sensitive electrochemical dopamine sensor from poly (diallyldimethylammonium chloride)-functionalized graphene nanoribbon/gold nanoparticle nanocomposite. J Nanosci Nanotechnol 16(2):1645–1649PubMedCrossRefPubMedCentralGoogle Scholar
  96. Liz-Marzán LM, Giersig M, Mulvaney P (1996) Synthesis of nanosized gold-silica core-shell particles. Langmuir 12(18):4329–4335CrossRefGoogle Scholar
  97. Lohse SE, Dahl JA, Hutchison JE (2010) Direct synthesis of large water-soluble functionalized gold nanoparticles using Bunte salts as ligand precursors. Langmuir 26(10):7504–7511PubMedCrossRefPubMedCentralGoogle Scholar
  98. Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711.  https://doi.org/10.1021/nl050127s CrossRefPubMedPubMedCentralGoogle Scholar
  99. Lyon LA, Musick MD, Natan MJ (1998) Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal Chem 70(24):5177–5183PubMedCrossRefPubMedCentralGoogle Scholar
  100. Ma Z, Han H (2008) One-step synthesis of cystine-coated gold nanoparticles in aqueous solution. Surf A 317(1):229–233CrossRefGoogle Scholar
  101. Mahato K, Baranwal A, Srivastava A, Maurya PK, Chandra P (2016a) Smart materials for biosensing applications. In: Pawar PM, Ronge BP, Balasubramaniam R, Seshabhattar S (eds) Techno-societal 2016, international conference on advanced technologies for societal applications, Springer, Berlin, pp 421–431Google Scholar
  102. Mahato K, Prasad A, Maurya P, Chandra P (2016b) Nanobiosensors: next generation point-of-care biomedical devices for personalized diagnosis. J Anal Bioanal Tech 7:e125.  https://doi.org/10.4172/2155-9872.1000e125 CrossRefGoogle Scholar
  103. Mahato K, Srivastava A, Chandra P (2017) Paper based diagnostics for personalized health care: emerging technologies and commercial aspects. Biosens Bioelectron 96:246–259PubMedCrossRefPubMedCentralGoogle Scholar
  104. Mahato K, Kumar A, Maurya PK, Chandra P (2018a) Shifting paradigm of cancer diagnoses in clinically relevant samples based on miniaturized electrochemical nanobiosensors and microfluidic devices. Biosens Bioelectron 100:411–428.  https://doi.org/10.1016/j.bios.2017.09.003 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Mahato K, Kumar S, Srivastava A, Maurya PK, Singh R, Chandra P (2018b) Electrochemical immunosensors: fundamentals and applications in clinical diagnostics. In: Vashist SK, Luong JHT (eds) Handbook of immunoassay technologies. Elsevier, New York, pp 359–414CrossRefGoogle Scholar
  106. Mandal TK, Fleming MS, Walt DR (2002) Preparation of polymer coated gold nanoparticles by surface-confined living radical polymerization at ambient temperature. Nano Lett 2(1):3–7CrossRefGoogle Scholar
  107. Mandal R, Baranwal A, Srivastava A, Chandra P (2018) Evolving trends in bio/chemical sensors fabrication incorporating bimetallic nanoparticles. Biosens Bioelectron 117:546–561PubMedCrossRefPubMedCentralGoogle Scholar
  108. Manna A, Chen P-L, Akiyama H, Wei T-X, Tamada K, Knoll W (2003) Optimized photoisomerization on gold nanoparticles capped by unsymmetrical azobenzene disulfides. Chem Mater 15(1):20–28CrossRefGoogle Scholar
  109. Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8(8):1739–1746CrossRefGoogle Scholar
  110. Maurya PK, Kumar P, Nagotu S, Chand S, Chandra P (2016) Multi-target detection of oxidative stress biomarkers in quercetin and myricetin treated human red blood cells. RSC Adv 6(58):53195–53202.  https://doi.org/10.1039/C6RA05121A CrossRefGoogle Scholar
  111. Maye MM, Chun SC, Han L, Rabinovich D, Zhong C-J (2002) Novel spherical assembly of gold nanoparticles mediated by a tetradentate thioether. J Amer Chem Soc 124(18):4958–4959CrossRefGoogle Scholar
  112. Mohamed T, Matou-Nasri S, Farooq A, Whitehead D, Azzawi M (2017) Polyvinylpyrrolidone-coated gold nanoparticles inhibit endothelial cell viability, proliferation, and ERK1/2 phosphorylation and reduce the magnitude of endothelial-independent dilator responses in isolated aortic vessels. Int J Nanomed 12:8813CrossRefGoogle Scholar
  113. Morgan MT, Nakanishi Y, Kroll DJ, Griset AP, Carnahan MA, Wathier M, Oberlies NH, Manikumar G, Wani MC, Grinstaff MW (2006) Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Res 66(24):11913–11921PubMedCrossRefPubMedCentralGoogle Scholar
  114. Muthu MS, Leong DT, Mei L, Feng S-S (2014) Nanotheranostics-application and further development of nanomedicine strategies for advanced theranostics. Theranostics 4(6):660–677PubMedPubMedCentralCrossRefGoogle Scholar
  115. Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2(4):293–298CrossRefGoogle Scholar
  116. Negishi Y, Takasugi Y, Sato S, Yao H, Kimura K, Tsukuda T (2004) Magic-numbered Au n clusters protected by glutathione monolayers (n = 18, 21, 25, 28, 32, 39): isolation and spectroscopic characterization. J Amer Chem Soc 126(21):6518–6519CrossRefGoogle Scholar
  117. Newman J, Blanchard G (2006) Formation of gold nanoparticles using amine reducing agents. Langmuir 22(13):5882–5887PubMedCrossRefPubMedCentralGoogle Scholar
  118. Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114(3):343–347PubMedCrossRefPubMedCentralGoogle Scholar
  119. Noh H-B, Chandra P, Moon JO, Shim Y-B (2012) In vivo detection of glutathione disulfide and oxidative stress monitoring using a biosensor. Biomaterials 33(9):2600–2607PubMedCrossRefPubMedCentralGoogle Scholar
  120. Nuß S, Böttcher H, Wurm H, Hallensleben ML (2001) Gold nanoparticles with covalently attached polymer chains. Angew Chem Int Ed 40(21):4016–4018CrossRefGoogle Scholar
  121. Ocal SK, Patarroyo J, Kiremitler NB, Pekdemir S, Puntes VF, Onses MS (2018) Plasmonic assemblies of gold nanorods on nanoscale patterns of poly (ethylene glycol): application in surface-enhanced raman spectroscopy. J Colloid Interface Sci 532:449–455Google Scholar
  122. Oh J-H, Lee J-S (2011) Designed hybridization properties of DNA-gold nanoparticle conjugates for the ultraselective detection of a single-base mutation in the breast cancer gene BRCA1. Anal Chem 83(19):7364–7370PubMedCrossRefPubMedCentralGoogle Scholar
  123. Paciotti GF, Kingston DG, Tamarkin L (2006) Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Develop Res 67(1):47–54CrossRefGoogle Scholar
  124. Petroski J, Chou MH, Creutz C (2004) Rapid phosphine exchange on 1.5-nm gold nanoparticles. Inorganic Chem 43(5):1597–1599CrossRefGoogle Scholar
  125. Polizzi MA, Stasko NA, Schoenfisch MH (2007) Water-soluble nitric oxide-releasing gold nanoparticles. Langmuir 23(9):4938–4943PubMedCrossRefPubMedCentralGoogle Scholar
  126. Prasad A, Mahato K, Chandra P, Srivastava A, Joshi SN, Maurya PK (2016) Bioinspired composite materials: applications in diagnostics and therapeutics. J Mol Eng Mater 04(01):1640004.  https://doi.org/10.1142/S2251237316400049 CrossRefGoogle Scholar
  127. Rac O, Suchorska-Woźniak P, Fiedot M, Teterycz H (2014) Influence of stabilising agents and pH on the size of SnO2 nanoparticles. Beilstein J Nanotechnol 5(1):2192–2201PubMedPubMedCentralCrossRefGoogle Scholar
  128. Ray PC, Fortner A, Darbha GK (2006) Gold nanoparticle based FRET asssay for the detection of DNA cleavage. J Phys Chem B 110(42):20745–20748PubMedCrossRefPubMedCentralGoogle Scholar
  129. Ray PC, Darbha GK, Ray A, Hardy W, Walker J (2007) A gold-nanoparticle-based fluorescence resonance energy transfer probe for multiplexed hybridization detection: accurate identification of bio-agents DNA. Nanotechnology 18(37):375504CrossRefGoogle Scholar
  130. Sahoo SK, Misra R, Parveen S (2017) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. In: Balogh BP (ed) Nanomedicine in cancer. pan stanford, pp 73–124Google Scholar
  131. Sakai T, Alexandridis P (2004) Single-step synthesis and stabilization of metal nanoparticles in aqueous pluronic block copolymer solutions at ambient temperature. Langmuir 20(20):8426–8430PubMedCrossRefPubMedCentralGoogle Scholar
  132. Sardar R, Shumaker-Parry JS (2009) 9-BBN induced synthesis of nearly monodisperse ω-functionalized alkylthiol-stabilized gold nanoparticles. Chem Mater 21(7):1167–1169CrossRefGoogle Scholar
  133. Schaaff TG, Whetten RL (2000) Giant gold-glutathione cluster compounds: intense optical activity in metal-based transitions. J Phys Chem B 104(12):2630–2641CrossRefGoogle Scholar
  134. Schmid G (1992) Large clusters and colloids. Metals in the embryonic state. Chem Rev 92(8):1709–1727CrossRefGoogle Scholar
  135. Schmid G (2005) Nanoparticles: from theory to application. Wiley‐VCH Verlag GmbH & Co. KGaAGoogle Scholar
  136. Schmid G, Maihack V, Lantermann F, Peschel S (1996) Ligand-stabilized metal clusters and colloids: properties and applications. Dalton Trans (5):589–595Google Scholar
  137. Selvakannan P, Mandal S, Phadtare S, Gole A, Pasricha R, Adyanthaya S, Sastry M (2004) Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid. J Colloid Interface Sci 269(1):97–102PubMedCrossRefGoogle Scholar
  138. Shan J, Tenhu H (2007) Recent advances in polymer protected gold nanoparticles: synthesis, properties and applications. Chem Commun 44:4580–4598CrossRefGoogle Scholar
  139. Shankar SS, Ahmad A, Pasricha R, Sastry M (2003a) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13(7):1822–1826CrossRefGoogle Scholar
  140. Shankar SS, Ahmad A, Sastry M (2003b) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Progress 19(6):1627–1631CrossRefGoogle Scholar
  141. Shao Y, Jin Y, Dong S (2004) Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chem Commun (9):1104–1105Google Scholar
  142. Shao J, Griffin RJ, Galanzha EI, Kim J-W, Koonce N, Webber J, Mustafa T, Biris AS, Nedosekin DA, Zharov VP (2013) Photothermal nanodrugs: potential of TNF-gold nanospheres for cancer theranostics. Sci Rep 3:1293.  https://doi.org/10.1038/srep01293 http://www.nature.com/articles/srep01293#supplementary-information
  143. Shelley EJ, Ryan D, Johnson SR, Couillard M, Fitzmaurice D, Nellist PD, Chen Y, Palmer RE, Preece JA (2002) Dialkyl sulfides: novel passivating agents for gold nanoparticles. Langmuir 18(5):1791–1795CrossRefGoogle Scholar
  144. Shi J, Chan C, Pang Y, Ye W, Tian F, Lyu J, Zhang Y, Yang M (2015) A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus. Biosens Bioelectron 67:595–600PubMedCrossRefPubMedCentralGoogle Scholar
  145. Singh M, Harris-Birtill DC, Markar SR, Hanna GB, Elson DS (2015) Application of gold nanoparticles for gastrointestinal cancer theranostics: a systematic review. Nanomed 11(8):2083–2098CrossRefGoogle Scholar
  146. Son S, Kim N, You DG, Hong YY, Yhee JY, Kim K, Kwon IC, Kim SH (2017) Antitumor therapeutic application of self-assembled RNAi-AuNP nanoconstructs: combination of VEGF-RNAi and photothermal ablation. Theranostics 7(1):9–22PubMedPubMedCentralCrossRefGoogle Scholar
  147. Song J, Wang F, Yang X, Ning B, Harp MG, Culp SH, Hu S, Huang P, Nie L, Chen J (2016) Gold nanoparticle coated carbon nanotube ring with enhanced raman scattering and photothermal conversion property for theranostic applications. J Amer Chem Soc 138(22):7005–7015CrossRefGoogle Scholar
  148. Spampinato V, Parracino MA, La Spina R, Rossi F, Ceccone G (2016) Surface analysis of gold nanoparticles functionalized with thiol-modified glucose sams for biosensor applications. Front Chem 4:8PubMedPubMedCentralCrossRefGoogle Scholar
  149. Spivak MY, Bubnov RV, Yemets IM, Lazarenko LM, Tymoshok NO, Ulberg ZR (2013) Gold nanoparticles-the theranostic challenge for PPPM: nanocardiology application. EPMA J 4(1):18PubMedPubMedCentralCrossRefGoogle Scholar
  150. Srivastava S, Frankamp BL, Rotello VM (2005) Controlled plasmon resonance of gold nanoparticles self-assembled with PAMAM dendrimers. Chem Mater 17(3):487–490CrossRefGoogle Scholar
  151. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69CrossRefGoogle Scholar
  152. Stockman MI (2011) Nanoplasmonics: past, present, and glimpse into future. Opt Express 19(22):22029–22106PubMedCrossRefGoogle Scholar
  153. Strozyk MS, Jimenez de Aberasturi D, Liz-Marzán LM (2018) Composite polymer colloids for SERS-based applications. Chem Rec 18(7–8):807–818PubMedCrossRefGoogle Scholar
  154. Sugie A, Hatta T, Kanie K, Muramatsu A, Mori A (2009) Synthesis of thiol-capped gold nanoparticles with organometallic reagents as a new class of reducing agent. Chem Lett 38(6):562–563CrossRefGoogle Scholar
  155. Sun L, Crooks RM, Chechik V (2001) Preparation of polycyclodextrin hollow spheres by templating gold nanoparticles. Chem Commun (4):359–360Google Scholar
  156. Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ (2005) Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett 5(8):1569–1574PubMedCrossRefPubMedCentralGoogle Scholar
  157. Tanaka R, Yuhi T, Nagatani N, Endo T, Kerman K, Takamura Y, Tamiya E (2006) A novel enhancement assay for immunochromatographic test strips using gold nanoparticles. Anal Bioanal Chem 385(8):1414–1420PubMedCrossRefPubMedCentralGoogle Scholar
  158. Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289(5485):1757–1760PubMedCrossRefPubMedCentralGoogle Scholar
  159. Teimouri M, Khosravi-Nejad F, Attar F, Saboury AA, Kostova I, Benelli G, Falahati M (2018) Gold nanoparticles fabrication by plant extracts: synthesis, characterization, degradation of 4-nitrophenol from industrial wastewater, and insecticidal activity—a review. J Cleaner Prod 184:740–753CrossRefGoogle Scholar
  160. Templeton AC, Chen S, Gross SM, Murray RW (1999) Water-soluble, isolable gold clusters protected by tiopronin and coenzyme a monolayers. Langmuir 15(1):66–76CrossRefGoogle Scholar
  161. Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer-protected cluster molecules. Acc Chem Res 33(1):27–36PubMedCrossRefPubMedCentralGoogle Scholar
  162. Thomas KG, Kamat PV (2000) Making gold nanoparticles glow: enhanced emission from a surface-bound fluoroprobe. J Amer Chem Soc 122(11):2655–2656CrossRefGoogle Scholar
  163. Thomas KG, Zajicek J, Kamat PV (2002) Surface binding properties of tetraoctylammonium bromide-capped gold nanoparticles. Langmuir 18(9):3722–3727CrossRefGoogle Scholar
  164. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Faraday Discuss 11(0):55–75.  https://doi.org/10.1039/DF9511100055 CrossRefGoogle Scholar
  165. Tzhayik O, Sawant P, Efrima S, Kovalev E, Klug J (2002) Xanthate capping of silver, copper, and gold colloids. Langmuir 18(8):3364–3369CrossRefGoogle Scholar
  166. Vinhas R, Cordeiro M, Carlos F, Mendo S, Fernandes A, Figueiredo S, Baptista P (2015) Gold nanoparticle-based theranostics: disease diagnostics and treatment using a single nanomaterial. Nanobiosensors Dis Diagn 4:11–23Google Scholar
  167. Visaria RK, Griffin RJ, Williams BW, Ebbini ES, Paciotti GF, Song CW, Bischof JC (2006) Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-α delivery. Mol Cancer Ther 5(4):1014–1020PubMedCrossRefPubMedCentralGoogle Scholar
  168. Walter E, Murray B, Favier F, Kaltenpoth G, Grunze M, Penner R (2002) Noble and coinage metal nanowires by electrochemical step edge decoration. J Phys Chem B 106(44):11407–11411CrossRefGoogle Scholar
  169. Wang G, Zhang J, Murray RW (2002) DNA binding of an ethidium intercalator attached to a monolayer-protected gold cluster. Anal Chem 74(17):4320–4327PubMedCrossRefPubMedCentralGoogle Scholar
  170. Wang Z, Tan B, Hussain I, Schaeffer N, Wyatt MF, Brust M, Cooper AI (2007) Design of polymeric stabilizers for size-controlled synthesis of monodisperse gold nanoparticles in water. Langmuir 23(2):885–895PubMedCrossRefGoogle Scholar
  171. Wang CC, Wu SM, Li HW, Chang HT (2016) Biomedical applications of DNA-conjugated gold nanoparticles. ChemBioChem 17:1052–1062PubMedCrossRefPubMedCentralGoogle Scholar
  172. Wangoo N, Bhasin K, Mehta S, Suri CR (2008) Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: bioconjugation and binding studies. J Colloid Interface Sci 323(2):247–254PubMedCrossRefGoogle Scholar
  173. Watanabe S, Yamamoto S, Gouda A, Higashi Y (2012) Highly sensitive optical sensing of carbohydrate-protein interactions using glycoconjugated gold nanoparticles. BUNSEKI KAGAKU 61(1):49–56CrossRefGoogle Scholar
  174. Waters CA, Mills AJ, Johnson KA, Schiffrin DJ (2003) Purification of dodecanethiol derivatised gold nanoparticles. Chem Commun (4):540–541Google Scholar
  175. Weare WW, Reed SM, Warner MG, Hutchison JE (2000) Improved synthesis of small (d core ≈ 1.5 nm) phosphine-stabilized gold nanoparticles. J Amer Chem Soc 122(51):12890–12891CrossRefGoogle Scholar
  176. Won S-Y, Chandra P, Hee TS, Shim Y-B (2013) Simultaneous detection of antibacterial sulfonamides in a microfluidic device with amperometry. Biosens Bioelectron 39(1):204–209.  https://doi.org/10.1016/j.bios.2012.07.043 CrossRefPubMedPubMedCentralGoogle Scholar
  177. Wu Z-S, Jiang J-H, Fu L, Shen G-L, Yu R-Q (2006) Optical detection of DNA hybridization based on fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal Biochem 353(1):22–29PubMedCrossRefPubMedCentralGoogle Scholar
  178. Wu Q, Chen L, Huang L, Wang J, Liu J, Hu C, Han H (2015) Quantum dots decorated gold nanorod as fluorescent-plasmonic dual-modal contrasts agent for cancer imaging. Biosens Bioelectron 74:16–23PubMedCrossRefPubMedCentralGoogle Scholar
  179. Xiao Q, Gao H, Lu C, Yuan Q (2012) Gold nanoparticle-based optical probes for sensing aminothiols. TrAC Trends in Anal Chem 40:64–76CrossRefGoogle Scholar
  180. Yamamoto M, Nakamoto M (2003) New type of monodispersed gold nanoparticles capped by myristate and PPh3 ligands prepared by controlled thermolysis of [Au (C13H27COO)(PPh3)]. Chem Lett 32(5):452–453CrossRefGoogle Scholar
  181. Yee CK, Jordan R, Ulman A, White H, King A, Rafailovich M, Sokolov J (1999) Novel one-phase synthesis of thiol-functionalized gold, palladium, and iridium nanoparticles using superhydride. Langmuir 15(10):3486–3491CrossRefGoogle Scholar
  182. Yeh Y-C, Creran B, Rotello VM (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4(6):1871–1880.  https://doi.org/10.1039/C1NR11188D CrossRefPubMedPubMedCentralGoogle Scholar
  183. Yilmaz E, Suzer S (2010) Au nanoparticles in PMMA matrix: in situ synthesis and the effect of Au nanoparticles on PMMA conductivity. Appl Surf Sci 256(22):6630–6633CrossRefGoogle Scholar
  184. Yoo CI, Seo D, Chung BH, Chung IS, Song H (2009) A facile one-pot synthesis of hydroxyl-functionalized gold polyhedrons by a surface regulating copolymer. Chem Mater 21(5):939–944CrossRefGoogle Scholar
  185. Zachary M, Chechik V (2007) Hopping of thiolate ligands between Au nanoparticles revealed by EPR spectroscopy. Angew Chem Int Ed 46(18):3304–3307CrossRefGoogle Scholar
  186. Zepon KM, Otsuka I, Bouilhac CC, Muniz EC, Soldi V, Borsali R (2015) Glyco-nanoparticles made from self-assembly of maltoheptaose-block-Poly (methyl methacrylate): micelle, reverse micelle, and encapsulation. Biomacromol 16(7):2012–2024CrossRefGoogle Scholar
  187. Zhang N, Liu Y, Tong L, Xu K, Zhuo L, Tang B (2008) A novel assembly of Au NPs–β-CDs–FL for the fluorescent probing of cholesterol and its application in blood serum. Analyst 133(9):1176–1181PubMedCrossRefPubMedCentralGoogle Scholar
  188. Zhang Q, Lu X, Tang P, Zhang D, Tian J, Zhong L (2016) Gold Nanoparticle (AuNP)-based surface-enhanced raman scattering (SERS) probe of leukemic lymphocytes. Plasmonics 11(5):1361–1368.  https://doi.org/10.1007/s11468-016-0185-6 CrossRefGoogle Scholar
  189. Zhang Z, Sèbe G, Wang X, Tam KC (2018) Gold nanoparticles stabilized by poly (4-vinylpyridine) grafted cellulose nanocrystals as efficient and recyclable catalysts. Carbohydr Polymers 182:61–68CrossRefGoogle Scholar
  190. Zhao W, Gao Y, Kandadai SA, Brook MA, Li Y (2006) DNA polymerization on gold nanoparticles through rolling circle amplification: towards novel scaffolds for three-dimensional periodic nanoassemblies. Angew Chem Int Ed 45(15):2409–2413CrossRefGoogle Scholar
  191. Zheng M, Li Z, Huang X (2004) Ethylene glycol monolayer protected nanoparticles: synthesis, characterization, and interactions with biological molecules. Langmuir 20(10):4226–4235PubMedCrossRefPubMedCentralGoogle Scholar
  192. Zheng YB, Kiraly B, Weiss PS, Huang TJ (2012) Molecular plasmonics for biology and nanomedicine. Nanomedicine 7(5):751–770PubMedCrossRefPubMedCentralGoogle Scholar
  193. Zhou J, Beattie DA, Sedev R, Ralston J (2007) Synthesis and surface structure of thymine-functionalized, self-assembled monolayer-protected gold nanoparticles. Langmuir 23(18):9170–9177PubMedCrossRefPubMedCentralGoogle Scholar
  194. Zhu H, Pan Z, Hagaman EW, Liang C, Overbury SH, Dai S (2005) Facile one-pot synthesis of gold nanoparticles stabilized with bifunctional amino/siloxy ligands. J Colloid Interface Sci 287(1):360–365PubMedCrossRefPubMedCentralGoogle Scholar
  195. Zhu Y, Chandra P, Ban C, Shim Y-B (2012a) Electrochemical evaluation of binding affinity for aptamer selection using the microarray chip. Electroanalysis 24(5):1057–1064.  https://doi.org/10.1002/elan.201100734 CrossRefGoogle Scholar
  196. Zhu Y, Chandra P, Shim Y-B (2012b) Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine–Au nanoparticle-aptamer bioconjugate. Anal Chem 85(2):1058–1064PubMedCrossRefPubMedCentralGoogle Scholar
  197. Zhu Y, Chandra P, Song K-M, Ban C, Shim Y-B (2012c) Label-free detection of kanamycin based on the aptamer-functionalized conducting polymer/gold nanocomposite. Biosens Bioelectron 36(1):29–34PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • Kuldeep Mahato
    • 1
  • Sahil Nagpal
    • 2
  • Mahero Ayesha Shah
    • 3
  • Ananya Srivastava
    • 4
  • Pawan Kumar Maurya
    • 5
  • Shounak Roy
    • 6
  • Amit Jaiswal
    • 6
  • Renu Singh
    • 7
  • Pranjal Chandra
    • 1
    Email author
  1. 1.Laboratory of Bio-Physio Sensors and Nanobioengineering, Department of Bioscience and BioengineeringIndian Institute of TechnologyGuwahatiIndia
  2. 2.Technische Universität DresdenDresdenGermany
  3. 3.Julius Maximilians Universität Würzburg, Faculty of medicine UniklinikWürzburgGermany
  4. 4.Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and ResearchGuwahatiIndia
  5. 5.Department of BiochemistryCentral University of Haryana MahendergarhHaryanaIndia
  6. 6.School of Basic SciencesIndian Institute of Technology MandiMandiIndia
  7. 7.Department of Bioproducts and Biosystems EngineeringUniversity of MinnesotaSaint PaulUSA

Personalised recommendations