Advertisement

3 Biotech

, 9:54 | Cite as

In vitro fermentation of arabinoxylan from oat (Avena sativa L.) by Pekin duck intestinal microbiota

  • Dandan Tian
  • Xiaoqing Xu
  • Qing Peng
  • Zhiguo Wen
  • Yuwei Zhang
  • Chenyang Wei
  • Yu QiaoEmail author
  • Bo ShiEmail author
Original Article

Abstract

Arabinoxylan (AX) is abundant in cereal grains used as feed for ducks. However, the duck intestinal microbes responsible for the degradation of AX are not fully understood. In this study, oat AX was degraded and utilized by different duck intestinal microbiota in vitro. Changes in short-chain fatty acids (SCFAs), branch-chain fatty acids, and the pH resulted from a 72-h AX fermentation in intestinal samples were measured. The addition of AX increased the concentration of isobutyric acid and decreased the concentrations of SCFAs. The pH values decreased significantly in the intestinal samples. Gut microbiota were assessed using high-throughput sequencing of the 16S ribosomal RNA gene, and the results indicated that AX stimulated the growth of Megamonas and Bifidobacterium species, with Megamonas exhibiting the greatest stimulation. Overall, the results suggest that oat AX is utilized by specific bacteria in duck intestines, providing the theoretical basis for the impacts of AX on animal health.

Keywords

Arabinoxylan Microbiome Hydrolysis 16S rRNA Fermentation 

Notes

Acknowledgements

This work was supported by the Beijing Municipal Science and Technology Project (Grant number D161100006116002), and the National Natural Science Foundation of China (Grant number 31572440).

Compliance with ethical standards

Conflict of interest

All the authors declare that there are no conflicts of interest.

References

  1. Adamberg K, Kolk K, Jaagura M, Vilu R, Adamberg S (2018) The composition and metabolism of faecal microbiota is specifically modulated by different dietary polysaccharides and mucin: an isothermal microcalorimetry study. Benef Microb 9(1):21–34CrossRefGoogle Scholar
  2. Akhtar M, Tariq AF, Awais MM, Iqbal Z, Muhammadb F, Shahidc M, Hiszczynska- Sawicka E (2012) Studies on wheat bran arabinoxylan for its immunostimulatory and protective effects against avian coccidiosis. Carbohydr Polym 90:333–339CrossRefGoogle Scholar
  3. Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Gaskins A, Gaskins HR, Stumpf RM, Yildirim S, Torralba M, Gillis M, Wilson BA, Nelson KE, White BA, Leigh SR (2013) Habitat degradation impacts black howler monkey (Alouatta pigra) Gastrointestinal Microbiomes. ISME J 7:1344–1353CrossRefGoogle Scholar
  4. Bauera E, Williams BA, Voigt C, Mosenthin R, Verstegen MW (2010) In vitro fermentation of various carbohydrate-rich feed ingredients combined with chyme from pigs. Arch Anim Nutr Nutr 64(5):394–411CrossRefGoogle Scholar
  5. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300Google Scholar
  6. Best AA, Porter AL, Fraley SM, Fraley GS (2017) Characterization of gut microbiome dynamics in developing pekin ducks and impact of management system. Front Microbiol 7:2125CrossRefGoogle Scholar
  7. Broekaert WF, Courtin CM, Verbeke KT, Van de Wiele T, Verstraete W, Delcour JA (2011) Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit Rev Food Sci Nutr 51:178–194CrossRefGoogle Scholar
  8. Carlson J, Gould T, Slavin J (2016) In vitro analysis of partially hydrolyzed guar gum fermentation on identified gut microbiota. Anaerobe 42:60–66CrossRefGoogle Scholar
  9. Chassard C, Goumy V, Leclerc M, Del’homme C, Bernalier-Donadille A (2007) Characterization of the xylan-degrading microbial community from human faeces. FEMS Microbiol Ecol 61:121–131CrossRefGoogle Scholar
  10. Choi KY, Lee TK, Sul WJ (2015) Metagenomic analysis of chicken gut microbiota for improving metabolism and health of chickens—a review, Asian-Australas. J Anim Sci 28:1217–1225Google Scholar
  11. Cleemput G, Roels SP, Vanoort MP, Grobet J, Delcour JA (1993) Heterogeneity in the structure of water-soluble arabinoxylans in European wheat flours of variable bread-making quality. Cereal Chem 70:324–329Google Scholar
  12. Despres J, Forano E, Lepercq P, Comtet-Marre S, Jubelin G, Chambon C, Yeoman CJ, Berg Miller ME, Fields CJ, Martens E, Terrapon N, Henrissat B, White BA, Mosoni P (2016) Xylan degradation by the human gut Bacteroides xylanisolvens XB1A(T) involves two distinct gene clusters that are linked at the transcriptional level. BMC Genom 17:326CrossRefGoogle Scholar
  13. Dodd D, Moon YH, Swaminathan K, Mackie RI, Cann IK (2010) Transcriptomic analyses of xylan degradation by Prevotella bryantii and insights into energy acquisition by xylanolytic bacteroidetes. J Biol Chem 285(39):30261–30273CrossRefGoogle Scholar
  14. Dodd D, Mackie RI, Cann IKO (2011) Xylan degradation, a metabolic property shared by rumen and human colonic Bacteroidetes. Mol Microbiol 79:292–304CrossRefGoogle Scholar
  15. Emerson EL, Weimer PJ (2017) Fermentation of model hemicelluloses by Prevotella strains and Butyrivibrio fibrisolvens in pure culture and in ruminal enrichment cultures. Appl Microbiol Biotechnol 101(10):4269–4278CrossRefGoogle Scholar
  16. Grootaert C, Van den Abbeele P, Marzorati M, Broekaert WF, Courtin CM, Delcour JA, Verstraete W, Van de Wiele T (2009) Comparison of prebiotic effects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 69:231–242CrossRefGoogle Scholar
  17. Heimann E, Nyman M, Pålbrink AK, Lindkvist-Petersson K, Degerman E (2016) Branched short-chain fatty acids modulate glucose and lipid metabolism in primary adipocytes. Adipocyte 28:359–368CrossRefGoogle Scholar
  18. Hespell RB, Whitehead TR (1990) Physiology and genetics of xylan degradation by gastrointestinal tract bacteria. J Dairy Sci 73:3013–3022CrossRefGoogle Scholar
  19. Izydorczyk MS, Biliaderis CG (1995) Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr Polym 28:33–48CrossRefGoogle Scholar
  20. Jha R, Berrocoso JD (2015) Review: dietary fiber utilization and its effects on physiological functions and gut health of swine. Animal 9:1441–1452CrossRefGoogle Scholar
  21. Jiao J, Lu Q, Tan Z, Guan L, Zhou C, Tang S, Han X (2014) In vitro evaluation of effects of gut region and fiber structure on the intestinal dominant bacterial diversity and functional bacterial species. Anaerobe 28:168–177CrossRefGoogle Scholar
  22. Jie Z, Luo BY, Xiang MJ, Liu HW, Zhai ZK, Wang TS, Craig SA (2000) Studies on the effects of polydextrose intake on physiologic functions in Chinese people. Am J Clin Nutr 72:1503–1509CrossRefGoogle Scholar
  23. Kim DY, Shin DH, Jung S, Kim H, Lee JS, Cho HY, Bae KS, Sung CK, Rhee YH, Son KH, Park HY (2014) Novel alkali-tolerant GH10 endo-β-1,4-xylanase with broad substrate specificity from Microbacterium trichothecenolyticum HY-17, a gut bacterium of the mole cricket Gryllotalpa orientalis. J Microbiol Biotechnol 24(7):943–953CrossRefGoogle Scholar
  24. Koecher KJ, Noack JA, Timm DA, Klosterbuer AS, Thomas W, Slavin JL (2014) Estimation and interpretation of fermentation in the gut: coupling results from a 24 h batch in vitro system with fecal measurements from a human intervention feeding study using fructooligosaccharides, inulin, gum acacia and pea fiber. J Agric Food Chem 62:1332–1337CrossRefGoogle Scholar
  25. Lei F, Yin Y, Wang Y, Deng B, Yu HD, Li L, Xiang C, Wang S, Zhu B, Wang X (2012) Higher-level production of volatile fatty acids in vitro by chicken gut microbiotas than by human gut microbiotas as determined by functional analyses. Appl Environ Microbiol 78:5763–5772CrossRefGoogle Scholar
  26. Li M, Bauer LL, Chen X, Wang M, Kuhlenschmidt TB, Kuhlenschmidt MS Jr, Fahey GC, Donovan SM (2012) Microbial composition and in vitro fermentation patterns of human milk oligosaccharides and prebiotics differ between formula-fed and sow-reared piglets. J Nutr 142:681–689CrossRefGoogle Scholar
  27. Li M, Li G, Shang Q, Chen X, Liu W, Pi X, Zhu L, Yin Y, Yu G, Wang X (2016) In vitro fermentation of alginate and its derivatives by human gut microbiota. Anaerobe 39:19–25CrossRefGoogle Scholar
  28. McCormack UM, Curião T, Buzoianu SG, Prieto ML, Ryan T, Varley P, Crispie F, Magowan E, Metzler-Zebeli BU, Berry D, O’Sullivan O, Cotter PD, Gardiner GE, Lawlor PG (2017) Exploring a possible link between the intestinal microbiota and feed efficiency in pigs. Appl Environ Microbiol 83:e00380–e00317CrossRefGoogle Scholar
  29. Mendis M, Leclerc E, Simsek S (2016) Arabinoxylans, gut microbiota and immunity. Carbohydr Polym 30:159–166CrossRefGoogle Scholar
  30. Mirande C, Kadlecikova E, Matulova M, Capek P, Bernalier-Donadille A, Forano E, Béra-Maillet C (2010) Dietary fibre degradation and fermentation by two xylanolytic bacteria Bacteroides xylanisolvens XB1A and Roseburia intestinalis XB6B4 from the human intestine. J Appl Microbiol 109(2):451–460PubMedGoogle Scholar
  31. Murphy J, Devane ML, Robson B, Gilpin BJ (2005) Genotypic characterization of bacteria cultured from duck faeces. J Appl Microbiol 99:301–309CrossRefGoogle Scholar
  32. Park SH, Kim SA, Lee SI, Rubinelli PM, Roto SM, Pavlidis HO, McIntyre DR, Ricke SC (2017) Original XPCTM effect on Salmonella typhimurium and caecal microbiota from three different ages of broiler chickens when incubated in an anaerobic in vitro culture system. Front Microbiol 8:1070CrossRefGoogle Scholar
  33. Petersen BO, Lok F, Meier S (2014) Probing the structural details of xylan degradation by real-time NMR spectroscopy. Carbohydr Polym 112:587–594CrossRefGoogle Scholar
  34. Polansky O, Sekelova Z, Faldynova M, Sebkova A, Sisak F, Rychlik I (2015) Important metabolic pathways and biological processes expressed by chicken caecal microbiota. Appl Environ Microbiol 82:1569–1576CrossRefGoogle Scholar
  35. Polli JE (2008) In vitro studies are sometimes better than conventional human pharmacokinetic in vivo studies in assessing bioequivalence of immediate release solid oral drug dosage forms. AAPS J 10:289–299CrossRefGoogle Scholar
  36. Prayoonthien P, Nitisinprasert S, Keawsompong S (2018) In vitro fermentation of copra meal hydrolysate by chicken microbiota. 3 Biotech 8(1):41CrossRefGoogle Scholar
  37. Reimer RA, Maathuis AJ, Venema K, Lyon MR, Gahler RJ, Wood S (2014) Effect of the novel polysaccharide PolyGlycopleX® on short-chain fatty acid production in a computer-controlled in Vitro Model of the Human Large Intestine. Nutrients 6(3):1115–1127CrossRefGoogle Scholar
  38. Rumpagaporn P, Reuhs BL, Kaur A, Patterson JA, Keshavarzian A, Hamaker BR (2015) Structural features of soluble cereal arabinoxylan fibers associated with a slow rate of in vitro fermentation by human fecal microbiota. Carbohydr Polym 130:191–197CrossRefGoogle Scholar
  39. Sergeant MJ, Constantinidou C, Cogan TA, Bedford MR, Penn CW, Pallen MJ (2014) Extensive microbial and functional diversity within the chicken caecal microbiome. PLoS One 9:e91941CrossRefGoogle Scholar
  40. Stanley D, Geier MS, Chen H, Hughes RJ, Moore RJ (2015) Comparison of fecal and caecal microbiotas reveals qualitative similarities but quantitative differences. BMC Microbiol 15:1–11CrossRefGoogle Scholar
  41. Tarayre C, Brognaux A, Brasseur C, Bauwens J, Millet C, Mattéotti C, Destain J, Vandenbol M, Portetelle D, De Pauw E, Haubruge E, Francis F, Thonart P (2013) Isolation and cultivation of a xylanolytic Bacillus subtilis extracted from the gut of the termite Reticulitermes santonensis. Appl Biochem Biotechnol 171(1):225–245CrossRefGoogle Scholar
  42. Van Laere KMJ, Hartemink R, Bosveld M, Schols HA, Voragen AGJ (2000) Fermentation of plant cell wallderived polysaccharides and their corresponding oligosaccharides by intestinal bacteria. J Agric Food Chem 48:1644–1652CrossRefGoogle Scholar
  43. Videnska P, Sedlar K, Lukac M, Faldynova M, Gerzova L, Cejkova D, Sisak F, Rychlik I (2014) Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life. PLoS One 9:e115142CrossRefGoogle Scholar
  44. Walsh AM, Sweeney T, Bahar B, Flynn B, O’Doherty JV (2013) The effects of supplementing varying molecular weights of chitooligosaccharide on performance, selected microbial populations and nutrient digestibility in the weaned pig. Animal 7:571–579CrossRefGoogle Scholar
  45. Walugembe M, Hsieh JC, Koszewski NJ, Lamont SJ, Persia ME, Rothschild MF (2015) Effects of dietary fiber on caecal short-chain fatty acid and caecal microbiota of broiler and laying-hen chicks. Poult Sci 94:2351–2359CrossRefGoogle Scholar
  46. Whitehead TR, Cotta MA (2001) Identification of a broad-specificity xylosidase/arabinosidase important for xylooligosaccharide fermentation by the ruminal anaerobe Selenomonas ruminantium GA192. Curr Microbiol 43:293–298CrossRefGoogle Scholar
  47. Wong JMW, de Souza R, Kendall CWC, Emam A, Jenkins DJA (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40:235–243CrossRefGoogle Scholar
  48. Yokoyama H, Wagner ID, Wiegel J (2010) Caldicoprobacter oshimai gen. nov., sp. nov., an anaerobic, xylanolytic, extremely thermophilic bacterium isolated from sheep faeces, and proposal of Caldicoprobacteraceae fam. nov. Int J Syst Evol Microbiol 60(Pt 1):67–71CrossRefGoogle Scholar
  49. Zarling EJ, Ruchim MA (1987) Protein origin of the volatile fatty acids isobutyrate and isovalerate in human stool. J Lab Clin Med 109(5):566–570PubMedGoogle Scholar
  50. Zhang M, Chekan JR, Dodd D, Hong PY, Radlinski L, Revindran V, Nair SK, Mackie RI, Cann I (2014) Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes. Proc Natl Acad Sci USA 111(35):E3708–E3717CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research InstituteChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China

Personalised recommendations