Advertisement

3 Biotech

, 9:41 | Cite as

Mixed fermentation of Aspergillus niger and Candida shehatae to produce bioethanol with ionic-liquid-pretreated bagasse

  • Zaiqiang WuEmail author
Original Article
  • 25 Downloads

Abstract

In this study, bagasse was pretreated with ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) and 1% NaOH solution for initial activation of bagasse. A mixed fermentation of treated bagasse by Aspergillus niger and Candida shehatae showed the optimal conditions with the addition of C. shehatae 12 h later at a 1:1 proportion to A. niger. To further improve the ethanol production and obtain optimal fermentation conditions, a Plackett–Burman design was applied to screen the significant formulation and process variables. The optimal ethanol fermentation conditions with IL pretreated bagasse were determined using response surface methodology by Box–Behnken design. Three variables “initial pH, (NH4)2SO4, fermentation time” were regarded as significant factors in the optimization study. The resulting optimum fermentation conditions for bioethanol was identified as: initial pH of 5.89, (NH4)2SO4 concentration of 0.40 g/50 mL, and fermentation time of 3.60 days. The verification experimental ethanol concentration was 8.14 g/L, which agreed with the predicted value. An enhancement of approximately 153.58% compared with initial fermentation conditions in ethanol production was found using optimized conditions. It demonstrated that optimization methodology had a positive effect on the improvement of ethanol production. Under the optimal fermentation medium and conditions, the ethanol production with IL-pretreated bagasse and untreated bagasse was 8.14 g/L and 5.03 g/L, respectively, which exhibited 62% increase, compared to initial conditions with production of 3.21 g/L and 2.67 g/L, respectively, which displayed 20% increase. Both under optimal and original fermentation conditions, compared to the fermentation medium with untreated bagasse, all the results indicated that IL-pretreated bagasse resulted in higher ethanol production than untreated bagasse, demonstrating that IL-pretreated bagasse successfully increased the ethanol production in the mixed fermentation by A. niger and C. shehatae.

Keywords

Ionic liquid Mixed fermentation Plackett–Burman design Box–Behnken design Response surface methodology 

Notes

Acknowledgements

The author is grateful for the support of all the members from Molecular Metabolic center of Nanjing University of Science and Technology.

Compliance with ethical standards

Conflict of interest

We confirm that this manuscript has neither been published elsewhere nor was under consideration by another journal. All authors approved this manuscript and agree with its submission to your journal. The authors have no conflicts of interest.

Supplementary material

13205_2019_1570_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 KB)

References

  1. Abd El Aty AA, Wehaidy HR, Mostafa FA (2014) Optimization of inulinase production from low cost substrates using Plackett–Burman and Taguchi methods. Carbohydr Polym 102:261–268.  https://doi.org/10.1016/j.carbpol.2013.11.007 CrossRefPubMedGoogle Scholar
  2. Abdel-Fattah YR (2002) Optimization of thermostable lipase production from a thermophilic Geobacillus sp. using Box-Behnken experimental design. Biotechnol Lett 24(14):1217–1222.  https://doi.org/10.1023/A:1016167416712 CrossRefGoogle Scholar
  3. Agler MT, Wrenn BA, Zinder SH, Angenent LT (2011) Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 29(2):70–78.  https://doi.org/10.1016/j.tibtech.2010.11.006 CrossRefPubMedGoogle Scholar
  4. Baroutaji A, Gilchrist MD, Smyth D, Olabi AG (2015) Crush analysis and multi-objective optimization design for circular tube under quasi-static lateral loading. Thin Walled Struct 86:121–131.  https://doi.org/10.1016/j.tws.2014.08.018 CrossRefGoogle Scholar
  5. Belal EB (2013) Bioethanol production from rice straw residues. Braz J Microbiol 44(1):225–234CrossRefGoogle Scholar
  6. Bellido C, Bolado S, Coca M, Lucas S, Gonzalez-Benito G, Garcia-Cubero MT (2011) Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresour Technol 102(23):10868–10874.  https://doi.org/10.1016/j.biortech.2011.08.128 CrossRefPubMedGoogle Scholar
  7. Belmessikh A, Boukhalfa H, Mechakra-Maza A, Gheribi-Aoulmi Z, Amrane A (2013) Statistical optimization of culture medium for neutral protease production by Aspergillus oryzae. Comparative study between solid and submerged fermentations on tomato pomace. J Taiwan Inst Chem Eng 44(3):377–385.  https://doi.org/10.1016/j.jtice.2012.12.011 CrossRefGoogle Scholar
  8. Bengtsson S, Pisco AR, Reis MA, Lemos PC (2010) Production of polyhydroxyalkanoates from fermented sugar cane molasses by a mixed culture enriched in glycogen accumulating organisms. J Biotechnol 145(3):253–263.  https://doi.org/10.1016/j.jbiotec.2009.11.016 CrossRefPubMedGoogle Scholar
  9. Cao Y, Tan H (2005) Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction. Enzyme Microbial Technol 36(2–3):314–317.  https://doi.org/10.1016/j.enzmictec.2004.09.002 CrossRefGoogle Scholar
  10. Chaganti SR, Kim D-H, Lalman JA, Shewa WA (2012) Statistical optimization of factors affecting biohydrogen production from xylose fermentation using inhibited mixed anaerobic cultures. Int J Hydrogen Energy 37(16):11710–11718.  https://doi.org/10.1016/j.ijhydene.2012.05.036 CrossRefGoogle Scholar
  11. Chan Cupul W, Heredia Abarca G, Martínez Carrera D, Rodríguez Vázquez R (2014) Enhancement of ligninolytic enzyme activities in a Trametes maxima–Paecilomyces carneus co-culture: key factors revealed after screening using a Plackett–Burman experimental design. Electron J Biotechnol 17(3):114–121.  https://doi.org/10.1016/j.ejbt.2014.04.007 CrossRefGoogle Scholar
  12. Chapple C, Ladisch M, Meilan R (2007) Loosening lignin’s grip on biofuel production. Nat Biotechnol 25(7):746–748.  https://doi.org/10.1038/nbt0707-746 CrossRefPubMedGoogle Scholar
  13. Chen S, Zeng Z, Hu N, Bai B, Wang H, Suo Y (2018) Simultaneous optimization of the ultrasound-assisted extraction for phenolic compounds content and antioxidant activity of Lycium ruthenicum Murr. fruit using response surface methodology. Food Chem 242:1–8.  https://doi.org/10.1016/j.foodchem.2017.08.105 CrossRefPubMedGoogle Scholar
  14. da Silva AS, Inoue H, Endo T, Yano S, Bon EP (2010) Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour Technol 101(19):7402–7409.  https://doi.org/10.1016/j.biortech.2010.05.008 CrossRefPubMedGoogle Scholar
  15. Dadi AP, Varanasi S, Schall CA (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng 95(5):904–910.  https://doi.org/10.1002/bit.21047 CrossRefPubMedGoogle Scholar
  16. Dawson L, Boopathy R (2007) Use of post-harvest sugarcane residue for ethanol production. Bioresour Technol 98(9):1695–1699.  https://doi.org/10.1016/j.biortech.2006.07.029 CrossRefPubMedGoogle Scholar
  17. Dawson L, Boopathy R (2008) Cellulosic ethanol production from sugarcane bagassed without enzymatic saccharification. Bioresources 3(2):452–460Google Scholar
  18. De Bari I, Cuna D, Di Matteo V, Liuzzi F (2014) Bioethanol production from steam-pretreated corn stover through an isomerase mediated process. New Biotechnol 31(2):185–195.  https://doi.org/10.1016/j.nbt.2013.12.003 CrossRefGoogle Scholar
  19. Devi MC, Kumar MS (2017) Production, optimization and partial purification of cellulase by Aspergillus niger fermented with paper and timber sawmill industrial wastes. J Microbiol Biotechnol Res 2(1):120–128Google Scholar
  20. Do TT, Quyen DT, Nguyen TN, Nguyen VT (2013) Molecular characterization of a glycosyl hydrolase family 10 xylanase from Aspergillus niger. Protein Expr Purif 92(2):196–202.  https://doi.org/10.1016/j.pep.2013.09.011 CrossRefPubMedGoogle Scholar
  21. Earle MJ, Seddon KR (2000) Ionic liquids. Green solvents for the future. Pure Appl Chem 72(7):1391–1398.  https://doi.org/10.1351/pac200072071391 CrossRefGoogle Scholar
  22. Fiedler MRM, Barthel L, Kubisch C, Nai C, Meyer V (2018) Construction of an improved Aspergillus niger platform for enhanced glucoamylase secretion. Microb Cell Fact 17(1):95.  https://doi.org/10.1186/s12934-018-0941-8 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fontana RC, Polidoro TA, da Silveira MM (2009) Comparison of stirred tank and airlift bioreactors in the production of polygalacturonases by Aspergillus oryzae. Bioresour Technol 100(19):4493–4498.  https://doi.org/10.1016/j.biortech.2008.11.062 CrossRefPubMedGoogle Scholar
  24. Gregorio GFD, Weber CC, Grasvik J, Welton T, Brandt A, Hallett J (2016) Mechanistic insights into lignin depolymerisation in acidic ionic liquids. Green Chem 18:5456–5465.  https://doi.org/10.1039/C6GC01295G CrossRefGoogle Scholar
  25. Guzun AS, Stroescu M, Jinga SI, Voicu G, Grumezescu AM, Holban AM (2014) Plackett–Burman experimental design for bacterial cellulose–silica composites synthesis. Mater Sci Eng C Mater Biol Appl 42:280–288.  https://doi.org/10.1016/j.msec.2014.05.031 CrossRefPubMedGoogle Scholar
  26. Haghighi Mood S, Hossein Golfeshan A, Tabatabaei M, Salehi Jouzani G, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93.  https://doi.org/10.1016/j.rser.2013.06.033 CrossRefGoogle Scholar
  27. Han M, Kim Y, Kim Y, Chung B, Choi G-W (2010) Bioethanol production from optimized pretreatment of cassava stem. Korean J Chem Eng 28(1):119–125.  https://doi.org/10.1007/s11814-010-0330-4 CrossRefGoogle Scholar
  28. Han M, Kim Y, Kim SW, Choi G-W (2011) High efficiency bioethanol production from OPEFB using pilot pretreatment reactor. J Chem Technol Biotechnol 86(12):1527–1534.  https://doi.org/10.1002/jctb.2668 CrossRefGoogle Scholar
  29. Hertwich EG, Gibon T, Bouman EA, Arvesen A, Suh S, Heath GA, Bergesen JD, Ramirez A, Vega MI, Shi L (2015) Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc Natl Acad Sci USA 112(20):6277–6282.  https://doi.org/10.1073/pnas.1312753111 CrossRefPubMedGoogle Scholar
  30. Hickert LR, da Cunha-Pereira F, de Souza-Cruz PB, Rosa CA, Ayub MA (2013) Ethanogenic fermentation of co-cultures of Candida shehatae HM 52.2 and Saccharomyces cerevisiae ICV D254 in synthetic medium and rice hull hydrolysate. Bioresour Technol 131:508–514.  https://doi.org/10.1016/j.biortech.2012.12.135 CrossRefPubMedGoogle Scholar
  31. Hickert LR, Cruz MM, Dillon AJP, Fontana RC, Rosa CA, Ayub MAZ (2014) Fermentation kinetics of acid–enzymatic soybean hull hydrolysate in immobilized-cell bioreactors of Saccharomyces cerevisiae, Candida shehatae, Spathaspora arborariae, and their co-cultivations. Biochem Eng J 88:61–67.  https://doi.org/10.1016/j.bej.2014.04.004 CrossRefGoogle Scholar
  32. Hwang C-F, Chang J-H, Houng J-Y, Tsai C-C, Lin C-K, Tsen H-Y (2012) Optimization of medium composition for improving biomass production of Lactobacillus plantarum Pi06 using the Taguchi array design and the Box–Behnken method. Biotechnol Bioprocess Eng 17(4):827–834.  https://doi.org/10.1007/s12257-012-0007-4 CrossRefGoogle Scholar
  33. Inoue S, Suzuki-Utsunomiya K, Komori Y, Kamijo A, Yumura I, Tanabe K, Miyawaki A, Koga K (2013) Fermentation of non-sterilized fish biomass with a mixed culture of film-forming yeasts and lactobacilli and its effect on innate and adaptive immunity in mice. J Biosci Bioeng 116(6):682–687.  https://doi.org/10.1016/j.jbiosc.2013.05.022 CrossRefPubMedGoogle Scholar
  34. Kamarudin NB, Sharma S, Gupta A, Kee CG, Chik S, Gupta R (2017) Statistical investigation of extraction parameters of keratin from chicken feather using Design-Expert. 3 Biotech 7(2):127.  https://doi.org/10.1007/s13205-017-0767-9 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kelley SS, Rials TG, Glasser WG (1987) Relaxation behaviour of the amorphous components of wood. J Mater Sci 22(2):617–624CrossRefGoogle Scholar
  36. Kim I, Lee B, Park JY, Choi SA, Han JI (2014) Effect of nitric acid on pretreatment and fermentation for enhancing ethanol production of rice straw. Carbohydr Polym 99:563–567.  https://doi.org/10.1016/j.carbpol.2013.08.092 CrossRefPubMedGoogle Scholar
  37. Kongjan P, Min B, Angelidaki I (2009) Biohydrogen production from xylose at extreme thermophilic temperatures (70 °C) by mixed culture fermentation. Water Res 43(5):1414–1424.  https://doi.org/10.1016/j.watres.2008.12.016 CrossRefPubMedGoogle Scholar
  38. Kuhad RC, Gupta R, Khasa YP, Singh A (2010) Bioethanol production from Lantana camara (red sage): pretreatment, saccharification and fermentation. Bioresour Technol 101(21):8348–8354.  https://doi.org/10.1016/j.biortech.2010.06.043 CrossRefPubMedGoogle Scholar
  39. Kuhad RC, Gupta R, Khasa YP, Singh A, Zhang YHP (2011) Bioethanol production from pentose sugars: current status and future prospects. Renew Sustain Energy Rev 15(9):4950–4962.  https://doi.org/10.1016/j.rser.2011.07.058 CrossRefGoogle Scholar
  40. Kuo C-H, Lee C-K (2009) Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohyd Polym 77(1):41–46.  https://doi.org/10.1016/j.carbpol.2008.12.003 CrossRefGoogle Scholar
  41. Lakshmi GS, Rao CS, Rao RS, Hobbs PJ, Prakasham RS (2009) Enhanced production of xylanase by a newly isolated Aspergillus terreus under solid state fermentation using palm industrial waste: a statistical optimization. Biochem Eng J 48(1):51–57.  https://doi.org/10.1016/j.bej.2009.08.005 CrossRefGoogle Scholar
  42. Lebeau T, Jouenne T, Junter GA (2007) Long-term incomplete xylose fermentation, after glucose exhaustion, with Candida shehatae co-immobilized with Saccharomyces cerevisiae. Microbiol Res 162(3):211–218.  https://doi.org/10.1016/j.micres.2006.07.005 CrossRefPubMedGoogle Scholar
  43. Li Q, He YC, Xian M, Jun G, Xu X, Yang JM, Li LZ (2009) Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour Technol 100(14):3570–3575.  https://doi.org/10.1016/j.biortech.2009.02.040 CrossRefPubMedGoogle Scholar
  44. Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101(13):4900–4906.  https://doi.org/10.1016/j.biortech.2009.10.066 CrossRefPubMedGoogle Scholar
  45. Liu B-F, Ren N-Q, Tang J, Ding J, Liu W-Z, Xu J-F, Cao G-L, Guo W-Q, Xie G-J (2010) Bio-hydrogen production by mixed culture of photo- and dark-fermentation bacteria. Int J Hydrogen Energy 35(7):2858–2862.  https://doi.org/10.1016/j.ijhydene.2009.05.005 CrossRefGoogle Scholar
  46. Liu F, Wang B, Ye Y, Pan L (2018) High level expression and characterization of tannase tan7 using Aspergillus niger SH-2 with low-background endogenous secretory proteins as the host. Protein Expr Purif 144:71–75.  https://doi.org/10.1016/j.pep.2017.11.003 CrossRefPubMedGoogle Scholar
  47. Long C, Cui J, Liu Z, Liu Y, Long M, Hu Z (2010) Statistical optimization of fermentative hydrogen production from xylose by newly isolated Enterobacter sp. CN1. Int J Hydrogen Energy 35(13):6657–6664.  https://doi.org/10.1016/j.ijhydene.2010.04.094 CrossRefGoogle Scholar
  48. Ma H-z, Xing Y, Yu M, Wang Q (2014) Feasibility of converting lactic acid to ethanol in food waste fermentation by immobilized lactate oxidase. Appl Energy 129:89–93.  https://doi.org/10.1016/j.apenergy.2014.04.098 CrossRefGoogle Scholar
  49. Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholm R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crops Prod 32(3):175–201.  https://doi.org/10.1016/j.indcrop.2010.04.005 CrossRefGoogle Scholar
  50. Martens-Uzunova ES, Schaap PJ (2009) Assessment of the pectin degrading enzyme network of Aspergillus niger by functional genomics. Fungal Genet Biol 46(1):S170–S179.  https://doi.org/10.1016/j.fgb.2008.07.021 CrossRefPubMedGoogle Scholar
  51. Martínez-Toledo A, Rodríguez-Vázquez R (2010) Response surface methodology (Box–Behnken) to improve a liquid media formulation to produce biosurfactant and phenanthrene removal by Pseudomonas putida. Ann Microbiol 61(3):605–613.  https://doi.org/10.1007/s13213-010-0179-0 CrossRefGoogle Scholar
  52. Mnif I, Ellouze-Chaabouni S, Ghribi D (2013) Optimization of inocula conditions for enhanced biosurfactant production by Bacillus subtilis SPB1, in submerged culture, using Box–Behnken design. Probiotics Antimicrob Proteins 5(2):92–98.  https://doi.org/10.1007/s12602-012-9113-z CrossRefPubMedGoogle Scholar
  53. Moniruzzaman M, Goto M (2018) Ionic liquid pretreatment of lignocellulosic biomass for enhanced enzymatic delignification. Adv Biochem Eng Biotechnol.  https://doi.org/10.1007/10_2018_64 CrossRefPubMedGoogle Scholar
  54. Montheard J, Garcier S, Lombard E, Cameleyre X, Guillouet S, Molina-Jouve C, Alfenore S (2012) Assessment of Candida shehatae viability by flow cytometry and fluorescent probes. J Microbiol Methods 91(1):8–13.  https://doi.org/10.1016/j.mimet.2012.07.002 CrossRefPubMedGoogle Scholar
  55. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686.  https://doi.org/10.1016/j.biortech.2004.06.025 CrossRefPubMedGoogle Scholar
  56. Moyer P, Kim K, Abdoulmoumine N, Chmely SC, Long BK, Carrier DJ, Labbe N (2018) Structural changes in lignocellulosic biomass during activation with ionic liquids comprising 3-methylimidazolium cations and carboxylate anions. Biotechnol Biofuels 11:265.  https://doi.org/10.1186/s13068-018-1263-0 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Nguyen TA, Kim KR, Han SJ, Cho HY, Kim JW, Park SM, Park JC, Sim SJ (2010) Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Bioresour Technol 101(19):7432–7438.  https://doi.org/10.1016/j.biortech.2010.04.053 CrossRefPubMedGoogle Scholar
  58. Niemistö J, Pasanen A, Hirvelä K, Myllykoski L, Muurinen E, Keiski RL (2013) Pilot study of bioethanol dehydration with polyvinyl alcohol membranes. J Membr Sci 447:119–127.  https://doi.org/10.1016/j.memsci.2013.06.048 CrossRefGoogle Scholar
  59. Oita I, Halewyck H, Pieters S, Dejaegher B, Thys B, Rombaut B, Heyden YV (2009) Improving the capillary electrophoretic analysis of poliovirus using a Plackett–Burman design. J Pharm Biomed Anal 50(4):655–663.  https://doi.org/10.1016/j.jpba.2008.09.049 CrossRefPubMedGoogle Scholar
  60. Oleskowicz-Popiel P, Klein-Marcuschamer D, Simmons BA, Blanch HW (2014) Lignocellulosic ethanol production without enzymes–technoeconomic analysis of ionic liquid pretreatment followed by acidolysis. Bioresour Technol 158:294–299.  https://doi.org/10.1016/j.biortech.2014.02.016 CrossRefPubMedGoogle Scholar
  61. Pal A, Khanum F (2010) Production and extraction optimization of xylanase from Aspergillus niger DFR-5 through solid-state-fermentation. Bioresour Technol 101(19):7563–7569.  https://doi.org/10.1016/j.biortech.2010.04.033 CrossRefPubMedGoogle Scholar
  62. Pan CM, Fan YT, Xing Y, Hou HW, Zhang ML (2008) Statistical optimization of process parameters on biohydrogen production from glucose by Clostridium sp. Fanp2. Bioresour Technol 99(8):3146–3154.  https://doi.org/10.1016/j.biortech.2007.05.055 CrossRefPubMedGoogle Scholar
  63. Perez-Pimienta JA, Lopez-Ortega MG, Varanasi P, Stavila V, Cheng G, Singh S, Simmons BA (2013) Comparison of the impact of ionic liquid pretreatment on recalcitrance of agave bagasse and switchgrass. Bioresour Technol 127:18–24.  https://doi.org/10.1016/j.biortech.2012.09.124 CrossRefPubMedGoogle Scholar
  64. Pirota RDPB, Tonelotto M, Delabona PdS, Fonseca RF, Paixão DAA, Baleeiro FCF, Bertucci Neto V, Farinas CS (2013) Enhancing xylanases production by a new Amazon Forest strain of Aspergillus oryzae using solid-state fermentation under controlled operation conditions. Ind Crops Prod 45:465–471.  https://doi.org/10.1016/j.indcrop.2013.01.010 CrossRefGoogle Scholar
  65. Porfiri MC, Picó G, Farruggia B, Romanini D (2010) Insoluble complex formation between alpha-amylase from Aspergillus oryzae and polyacrylic acid of different molecular weight. Process Biochem 45(10):1753–1756.  https://doi.org/10.1016/j.procbio.2010.07.006 CrossRefGoogle Scholar
  66. Qiu Z, Aita GM, Walker MS (2012) Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Bioresour Technol 117:251–256.  https://doi.org/10.1016/j.biortech.2012.04.070 CrossRefPubMedGoogle Scholar
  67. Rao S, Klimont Z, Smith SJ, Van Dingenen R, Dentener F, Bouwman L, Riahi K, Amann M, Bodirsky BL, van Vuuren DP, Aleluia Reis L, Calvin K, Drouet L, Fricko O, Fujimori S, Gernaat D, Havlik P, Harmsen M, Hasegawa T, Heyes C, Hilaire J, Luderer G, Masui T, Stehfest E, Strefler J, van der Sluis S, Tavoni M (2017) Future air pollution in the shared socio-economic pathways. Glob Environ Change 42:346–358.  https://doi.org/10.1016/j.gloenvcha.2016.05.012 CrossRefGoogle Scholar
  68. Riahi K, van Vuuren DP, Kriegler E, Edmonds J, O’Neill BC, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, Lutz W, Popp A, Cuaresma JC, Kc S, Leimbach M, Jiang L, Kram T, Rao S, Emmerling J, Ebi K, Hasegawa T, Havlik P, Humpenöder F, Da Silva LA, Smith S, Stehfest E, Bosetti V, Eom J, Gernaat D, Masui T, Rogelj J, Strefler J, Drouet L, Krey V, Luderer G, Harmsen M, Takahashi K, Baumstark L, Doelman JC, Kainuma M, Klimont Z, Marangoni G, Lotze-Campen H, Obersteiner M, Tabeau A, Tavoni M (2017) The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob Environ Change 42:153–168.  https://doi.org/10.1016/j.gloenvcha.2016.05.009 CrossRefGoogle Scholar
  69. Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40(12):3693–3700.  https://doi.org/10.1016/j.procbio.2005.04.006 CrossRefGoogle Scholar
  70. Santos JRA, Lucena MS, Gusmão NB, Gouveia ER (2012) Optimization of ethanol production by Saccharomyces cerevisiae UFPEDA 1238 in simultaneous saccharification and fermentation of delignified sugarcane bagasse. Ind Crops Prod 36(1):584–588.  https://doi.org/10.1016/j.indcrop.2011.10.002 CrossRefGoogle Scholar
  71. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37(1):19–27.  https://doi.org/10.1016/j.renene.2011.06.045 CrossRefGoogle Scholar
  72. Sato Y, Fukuda H, Zhou Y, Mikami S (2010) Contribution of ethanol-tolerant xylanase G2 from Aspergillus oryzae on Japanese sake brewing. J Biosci Bioeng 110(6):679–683.  https://doi.org/10.1016/j.jbiosc.2010.07.015 CrossRefPubMedGoogle Scholar
  73. Sittijunda S, Reungsang A (2012) Biohydrogen production from waste glycerol and sludge by anaerobic mixed cultures. Int J Hydrogen Energy 37(18):13789–13796.  https://doi.org/10.1016/j.ijhydene.2012.03.126 CrossRefGoogle Scholar
  74. Steinbusch KJ, Arvaniti E, Hamelers HV, Buisman CJ (2009) Selective inhibition of methanogenesis to enhance ethanol and n-butyrate production through acetate reduction in mixed culture fermentation. Bioresour Technol 100(13):3261–3267.  https://doi.org/10.1016/j.biortech.2009.01.049 CrossRefPubMedGoogle Scholar
  75. Subara D, Jaswir I, Rashid Alkhatib MF, Noorbatcha IA (2018) Understanding the significance variables for fabrication of fish gelatin nanoparticles by Plackett–Burman design. IOP Conf Ser Mater Sci Eng 290:012006.  https://doi.org/10.1088/1757-899x/290/1/012006 CrossRefGoogle Scholar
  76. Suhardi VSH, Prasai B, Samaha D, Boopathy R (2013) Evaluation of pretreatment methods for lignocellulosic ethanol production from energy cane variety L 79-1002. Int Biodeterior Biodegrad 85:683–687.  https://doi.org/10.1016/j.ibiod.2013.03.021 CrossRefGoogle Scholar
  77. Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11(5):646.  https://doi.org/10.1039/b822702k CrossRefGoogle Scholar
  78. Sun J, Zhu J, Li W (2012) l-(+) Lactic acid production by Rhizopus oryzae using pretreated dairy manure as carbon and nitrogen source. Biomass Bioenergy 47:442–450.  https://doi.org/10.1016/j.biombioe.2012.09.011 CrossRefGoogle Scholar
  79. Tan HT, Lee KT, Mohamed AR (2011) Pretreatment of lignocellulosic palm biomass using a solvent-ionic liquid [BMIM]Cl for glucose recovery: An optimisation study using response surface methodology. Carbohydr Polym 83(4):1862–1868.  https://doi.org/10.1016/j.carbpol.2010.10.052 CrossRefGoogle Scholar
  80. Teixeira RS, da Silva AS, Kim HW, Ishikawa K, Endo T, Lee SH, Bon EP (2013) Use of cellobiohydrolase-free cellulase blends for the hydrolysis of microcrystalline cellulose and sugarcane bagasse pretreated by either ball milling or ionic liquid [Emim][Ac]. Bioresour Technol 149:551–555.  https://doi.org/10.1016/j.biortech.2013.09.019 CrossRefPubMedGoogle Scholar
  81. Trinh LTP, Cho EJ, Lee YJ, Bae H-J, Lee H-J (2013) Pervaporative separation of bioethanol produced from the fermentation of waste newspaper. J Ind Eng Chem 19(6):1910–1915.  https://doi.org/10.1016/j.jiec.2013.02.036 CrossRefGoogle Scholar
  82. van den Brink J, de Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91(6):1477–1492.  https://doi.org/10.1007/s00253-011-3473-2 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Vyavahare GD, Gurav RG, Jadhav PP, Patil RR, Aware CB, Jadhav JP (2018) Response surface methodology optimization for sorption of malachite green dye on sugarcane bagasse biochar and evaluating the residual dye for phyto and cytogenotoxicity. Chemosphere 194:306–315.  https://doi.org/10.1016/j.chemosphere.2017.11.180 CrossRefPubMedGoogle Scholar
  84. Wang J, Wan W (2009) Experimental design methods for fermentative hydrogen production: a review. Int J Hydrogen Energy 34(1):235–244.  https://doi.org/10.1016/j.ijhydene.2008.10.008 CrossRefGoogle Scholar
  85. Wang P, Wang Z, Wu Z (2012) Insights into the effect of preparation variables on morphology and performance of polyacrylonitrile membranes using Plackett–Burman design experiments. Chem Eng J 193–194:50–58.  https://doi.org/10.1016/j.cej.2012.04.017 CrossRefGoogle Scholar
  86. Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 62:33–86.  https://doi.org/10.1016/j.pecs.2017.05.004 CrossRefGoogle Scholar
  87. Xie T, Liu J, Du K, Liang B, Zhang Y (2013) Enhanced biofuel production from high-concentration bioethanol wastewater by a newly isolated heterotrophic microalga, Chlorella vulgaris LAM-Q. J Microbiol Biotechnol 23(10):1460–1471CrossRefGoogle Scholar
  88. Xu F, Shi YC, Wu X, Theerarattananoon K, Staggenborg S, Wang D (2011) Sulfuric acid pretreatment and enzymatic hydrolysis of photoperiod sensitive sorghum for ethanol production. Bioprocess Biosyst Eng 34(4):485–492.  https://doi.org/10.1007/s00449-010-0492-9 CrossRefPubMedGoogle Scholar
  89. Yan J, Liu S (2015) Hot water pretreatment of boreal aspen woodchips in a pilot scale digester. Energies 8(2):1166–1180.  https://doi.org/10.3390/en8021166 CrossRefGoogle Scholar
  90. Yan J, Joshee N, Liu S (2013) Kinetics of the hot-water extraction of Paulownia elongata woodchips. J Bioprocess Eng Biorefin 2 (1):1–10.  https://doi.org/10.1166/jbeb.2013.1041 CrossRefGoogle Scholar
  91. Yan J, Joshee N, Liu S (2016) Utilization of hardwood in biorefinery: a kinetic interpretation of pilot-scale hot-water pretreatment of Paulownia elongata woodchips. J Biobased Mater Bioenergy 10(5):339–348.  https://doi.org/10.1166/jbmb.2016.1609 CrossRefGoogle Scholar
  92. Yang F, Li L, Li Q, Tan W, Liu W, Xian M (2010) Enhancement of enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media by ultrasonic intensification. Carbohydr Polym 81(2):311–316.  https://doi.org/10.1016/j.carbpol.2010.02.031 CrossRefGoogle Scholar
  93. Yoo CG, Pu Y, Ragauskas AJ (2017) Ionic liquids: promising green solvents for lignocellulosic biomass utilization. Curr Opin Green Sustain Chem 5:5–11.  https://doi.org/10.1016/j.cogsc.2017.03.003 CrossRefGoogle Scholar
  94. Yuvadetkun P, Leksawasdi N, Boonmee M (2017) Kinetic modeling of Candida shehatae ATCC 22984 on xylose and glucose for ethanol production. Prep Biochem Biotechnol 47(3):268–275.  https://doi.org/10.1080/10826068.2016.1224244 CrossRefPubMedGoogle Scholar
  95. Yuvadetkun P, Reungsang A, Boonmee M (2018) Comparison between free cells and immobilized cells of Candida shehatae in ethanol production from rice straw hydrolysate using repeated batch cultivation. Renew Energy 115:634–640.  https://doi.org/10.1016/j.renene.2017.08.033 CrossRefGoogle Scholar
  96. Zhang J, Geng A, Yao C, Lu Y, Li Q (2012) Effects of lignin-derived phenolic compounds on xylitol production and key enzyme activities by a xylose utilizing yeast Candida athensensis SB18. Bioresour Technol 121:369–378.  https://doi.org/10.1016/j.biortech.2012.07.020 CrossRefPubMedGoogle Scholar
  97. Zhou J, Yu X, Ding C, Wang Z, Zhou Q, Pao H, Cai W (2011) Optimization of phenol degradation by Candida tropicalis Z-04 using Plackett–Burman design and response surface methodology. J Environ Sci 23(1):22–30.  https://doi.org/10.1016/s1001-0742(10)60369-5 CrossRefGoogle Scholar
  98. Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8(4):325.  https://doi.org/10.1039/b601395c CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.Center for Molecular Metabolism, School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations