3 Biotech

, 8:411 | Cite as

Silver nanoparticles as antimicrobial therapeutics: current perspectives and future challenges

  • Parteek PrasherEmail author
  • Manjeet Singh
  • Harish Mudila
Review Article


Utility of silver metal in antimicrobial therapy is an accepted practice since ages that faded with time because of the identification of a few silver resistant strains in the contemporary era. A successive development of antibiotics soon followed. However, due to an indiscriminate and unregulated use coupled with poor legal control measures and a dearth of expertise in handling the critical episodes, the antibiotics era has already seen a steep decline in the past decades due to the evolution of multi-drug resistant ‘superbugs’ which pose a sizeable challenge to manage with. Due to limited options in the pipeline and no clear strategy in the forefront, the aspirations for novel, MDR focused drug discovery to target the ‘superbugs’ arose which once again led to the rise of AgNPs in antimicrobial research. In this review, we have focused on the green routes for the synthesis of AgNPs, the mode of microbial inhibition by AgNPs, synergistic effect of AgNPs with antibiotics and future challenges for the development of nano-silver-based therapeutics.


AgNPs Synergistic effect Multi drug resistance Antibiotics Green synthesis 



Room temperature


Silver nanoparticles


Compliance with ethical standards

Conflict of interest

Parteek Prasher, Manjeet Singh and Harish Mudila declare that they have no conflict of interest.


  1. Abbaszadegan A, Ghahramani Y, Gholami A, Hemmateenejad B, Dorostkar S, Nabavizadeh M, Sharghi H (2015) The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J Nanomater. (Article ID 720654) CrossRefGoogle Scholar
  2. Acharya D, Singha M, Pandey P, Mohanta B, Rajkumari J, Singha LP (2018) Shape dependent physical mutilation and lethal effects of silver nanoparticles on bacteria. Sci Rep 8:201. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ahmed S, Ullah S, Ahmad M, Swami BL, Ikram S (2016) Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci 9:1–7. CrossRefGoogle Scholar
  4. Ajitha B, Reddy YAK, Reddy PS (2014) Biosynthesis of silver nanoparticles using Plectranthus amboinicus leaf extract and its antimicrobial activity. Spectrochim Acta Part A Mol Biomol Spectrosc 128:257–262. CrossRefGoogle Scholar
  5. Ali A, Zafar H, Zia M, Haq I, Phull AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Almadiy AA, Nenaah GE, Shawer DM (2017) Facile synthesis of silver nanoparticles using harmala alkaloids and their insecticidal and growth inhibitory activities against the khapra beetle. J Pest Sci 91:727–737. doiCrossRefGoogle Scholar
  7. Alsammarraie FK, Wang W, Zhou P, Mustapha A, Lin M (2018) Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloid Surf B Biointerfaces. CrossRefPubMedGoogle Scholar
  8. Al-Shmgani HSA, Mohammed WH, Sulaiman GM, Saadoon AH (2016) Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities. Artif Cells Nanomed Biotechnol 45:1234. CrossRefGoogle Scholar
  9. Anbazhagan S, Azeez S, Morukattu G, Rajan R, Venkatesan K, Thangavelu KP (2017) Synthesis, characterization and biological applications of mycosynthesized silver nanoparticles. 3 Biotech 7:333. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ansari MA, Khan HM, Khan AA, Ahmad MK, Mahdi AA, Pal R, Cameotra SS (2013) Interaction of silver nanoparticles with Escherichia coli and their cell envelope biomolecules. J Basic Microbiol 54:905–915. CrossRefPubMedGoogle Scholar
  11. AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290. CrossRefPubMedGoogle Scholar
  12. Asharani P, Sethu S, Lim HK, Balaji G, Valiyaveettil S, Hande MP (2012) Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome Integr 3:2. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:Article 1984. CrossRefPubMedGoogle Scholar
  14. Bajpai SK, Mohan YM, Bajpai M, Tankhiwale R, Thomas V (2007) Synthesis of polymer stabilized silver and gold nanostructures. J Nanosci Nanotechnol 7:1–17. CrossRefGoogle Scholar
  15. Banasiuk R, Krychowiak M, Swigon D, Tomaszewich W, Michalak A, Chylewska A, Ziabka M, Lapinski M, Koscielska B, Narajczyk M, Krolicka A (2017) Carnivorous plants used for green synthesis of silver nanoparticles with broad-spectrum antimicrobial activity. Arab J Chem. CrossRefGoogle Scholar
  16. Banerjee V, Das KP (2013) Interaction of silver nanoparticles with proteins: a characteristic protein concentration dependent profile of SPR signal. Colloids Surf B Biointerfaces 111:71–79. CrossRefPubMedGoogle Scholar
  17. Banerjee P, Satapathy M, Mukhopadhyay M, Das P (2014) Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour Bioprocess 1:3. CrossRefGoogle Scholar
  18. Bao H, Yu X, Xu C, Li X, Li Z, Wei D, Liu Y (2015) New toxicity mechanism of silver nanoparticles: promoting apoptosis and inhibiting proliferation. PLoS One 10(3):e0122535. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bar H, Bhui DK, Sahoo GP, Sarkar P, Pyne S, Misra A (2009) Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf A Physicochem Eng Asp 348:212–216. CrossRefGoogle Scholar
  20. Battocchio C, Meneghini C, Fratoddi L, Venditti L, Russo MV, Aquilanti G, Maurizio C, Bondino F, Matassa R, Rossi M, Mobilio S, Polzonetti C (2012) Silver nanoparticles stabilized with thiols: a close look at the local chemistry and chemical structure. J Phys Chem C 116:19571–19578. CrossRefGoogle Scholar
  21. Berger-Bachi B (2002) Resistance mechanisms of Gram-Positive bacteria. 292: 27–35. CrossRefGoogle Scholar
  22. Bhainsa KC, D’souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigates. Colloids Surf B 47:160–164. CrossRefGoogle Scholar
  23. Bhor G, Maskare S, Hinge S, Singh L, Nalwade A (2014) Synthesis of silver nanoparticles using leaflet extract of Nephrolepi sexaltata L. and evaluation antibacterial activity against human and plant pathogenic bacteria. Asian J Pharm Technol Innov 2:23–31Google Scholar
  24. Boca SC, Potara M, Gabudean AM, Juhem A, Baldeck PL, Astilean S (2011) Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Cancer Lett 311:131–140. CrossRefPubMedGoogle Scholar
  25. Borse S, Temgire M, Khan A, Joshi S (2016) Photochemically assisted one-pot synthesis of PMMA embedded silver nanoparticles: antibacterial efficacy and water treatment. RSC Adv 6:56674–56683. CrossRefGoogle Scholar
  26. Bressan E, Ferroni L, Gardin C, Rigo C, Stocchero M, Vindigni V, Cairns W, Zavan B (2013) Silver nanoparticles and mitochondrial interaction. Int J Dent 2013:312747. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Bush K (2017) Synergistic antibiotic combinations. topics. In: Fisher JF, Mobashery S, Miller MJ (eds) Medicinal chemistry. Springer, BerlinGoogle Scholar
  28. Buszewski B, Railean-Plugaru V, Pomastowski P, Rafinska K, Szultka-Mlynska M, Golinska P, Wypij M, Laskowski D, Dahm H (2018a) Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain. J Microbiol Immunol Infect 51:45–54. CrossRefPubMedGoogle Scholar
  29. Buszewski B, Railean-Plugaru V, Pomastowski P, Rafinska K, Szultka-Mlynska M, Golinska P, Wypij M, Laskowski D, Hanna D (2018b) Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain. J Microbiol Immunol Infect 51(1):45–54. CrossRefPubMedGoogle Scholar
  30. Butler KS, Peeler DJ, Casey BJ, Dair BJ, Elespuru RK (2015) Silver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity. Mutagenesis 30:577. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Cao C, Huang J, Cai W-S, Yan C-N, Liu J-L, Jiang Y-D (2017) Effects of silver nanoparticles on soil enzyme activity of different wetland plant soil systems. Soil Sediment Contam Int J 26:558–567. CrossRefGoogle Scholar
  32. Cavassin ED, de Figueir LFP, Otoch JP, Seckler MM, de Oliveira RA, Franco FF, Marangoni VS, Zucolotto V, Levin ASS, Costa SF (2015) Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J Nanobiotechnol 13:64. CrossRefGoogle Scholar
  33. Chauhan G, Gupta N, Sehrawat D, Kalra S, Rath G, Goyal AK (2015) Albumin stabilized silver nanoparticles–clotrimazole β-cyclodextrin hybrid nanocomposite for enriched anti-fungal activity in normal and drug resistant Candidacells. RSC Adv 5:71190–71202. CrossRefGoogle Scholar
  34. Chibber S, Gondil VS, Sharma S, Kumar M, Wangoo N, Sharma RK (2017) A novel approach for combating Klebsiella pneumoniae biofilm using histidine functionalized silver nanoparticles. Front Microbiol 8:Article 1804. CrossRefGoogle Scholar
  35. Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588. CrossRefPubMedGoogle Scholar
  36. Chopra I (2007) The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother 59:587–590. CrossRefPubMedGoogle Scholar
  37. Choudhury P, Kumar R (1998) Multidrug- and metal-resistant strains of Klebsiella pneumoniae isolated from Penaeus monodon of the coastal waters of deltaic Sundarban. Can J Microbiol 44(2):186–189CrossRefGoogle Scholar
  38. Chung I-M, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G (2016) Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Res Lett 11:40. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Creighton JA, Blatchford CG, Albrecht MG (1979) Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of particle of size comparable to the excitation wavelength. J Chem Soc Faraday Trans II 75:790–798. CrossRefGoogle Scholar
  40. Daima HK, Bansal V (2015) Chap. 10—Influence of physicochemical properties of nanomaterials on their antibacterial applications. In: Rai M, Kon K (eds) Nanotechnology in diagnosis, treatment and prophylaxis of infectious diseases. Academic Press, Cambridge, pp 151–166. (ISBN 9780128013175) CrossRefGoogle Scholar
  41. Daima HK, Periasamy S, Kandjani AE, Shukla R, Bhargava SK, Bansal V (2013) Synergistic influence of polyoxometalate surface corona towards enhancing the antibacterial performance of tyrosine-capped Ag nanoparticles. Nanoscale 6:758–765. CrossRefGoogle Scholar
  42. Dakal TC, Kumar A, Majumdar RS, Yadav Y (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Davis IJ, Richards H, Mullany P (2005) Isolation of silver- and antibiotic-resistant Enterobacter cloacae from teeth. Oral Microbiol Immunol 20(3):191–194. CrossRefPubMedGoogle Scholar
  44. de Campos PA, Royer S, Batistão DW, Araújo BF, Queiroz LL, de Brito CS, Gontijo-Filho PP, Ribas RM (2016) Multidrug resistance related to biofilm formation in Acinetobacter baumannii and Klebsiella pneumoniae clinical strains from different pulsotypes. Curr Microbiol 72:617. CrossRefPubMedGoogle Scholar
  45. Deng H, McShan D, Zhang Y, Sinha SS, Arslan Z, Ray PC, Yu H (2016) Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics. Environ Sci Technol 50(16):8840–8848. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Dondi R, Su W, Griffith GA, Clark G, Burley GA (2012) Highly size- and shape-controlled synthesis of silver nanoparticles via a templated tollens reaction. Small 8:770–776. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Dong X, Ji X, Jing J, Li M, Li J, Yang W (2010) Synthesis of triangular silver nanoprism by stepwise reduction of sodium borohydride and trisodium citrate. J Phys Chem C 114:2070–2074. CrossRefGoogle Scholar
  48. Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep (Amst) 15:11–23. CrossRefGoogle Scholar
  49. Duran N, Silveira CP, Duran M, Martinez DST (2015) Silver nanoparticle protein corona and toxicity: a mini review. J Nanobiotechnol 13:55. CrossRefGoogle Scholar
  50. El-Adly A, Shabana I (2018) Antimicrobial activity of green silver nanoparticles against fluconazole-resistant Candida albicans in animal model. Egypt J Bot 58(1):119–132. CrossRefGoogle Scholar
  51. Elamawi RM, Al-Harbi RE, Hendi AA (2018) Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J Biol Pest Control 28:28. CrossRefGoogle Scholar
  52. Elegbede JA, Lateef A, Azeez MA, Asafa TB, Yekeen TA, Oladipo IC, Adibayo EA, Beukes LS, Geuguim-Kana EB (2018) Fungal xylanases-mediated synthesis of silver nanoparticles for catalytic and biomedical applications. IET Nanobiotechnol. CrossRefPubMedGoogle Scholar
  53. Evanoff DD, Chumanov G (2004) Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections. J Phys Chem B 108:13957–13962. CrossRefGoogle Scholar
  54. Fabrega J, Fawcett SR, Renshaw JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43:7285–7290. CrossRefPubMedGoogle Scholar
  55. Fair RJ, Tor Y (2014) Antibiotics and bacterial resistance in the 21st century. Perspect Med Chem 6:25–64. CrossRefGoogle Scholar
  56. Fanti JR, Tomiotto-Pellisier F, Miranda-Sapla MM, Cataneo AHD, de Andrade JT, Panis C, da Rodrigues HS, Wowk PF, Kuczera D, Costa IN, Nakamura CV, Nakazato G, Duran N, Pavanelli WR, Conchon-Costa I (2018) Biogenic silver nanoparticles inducing Leishmania amazonensis promastigote and amastigote death in vitro. Acta Trop 178:46–54. CrossRefPubMedGoogle Scholar
  57. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed NBM 6:103–109. CrossRefGoogle Scholar
  58. Feldmann C, Jungk H-O (2001) Polyol-mediated preparation of nanoscale oxide particles. Angew Chem 40:359–362.;2-B.CrossRefGoogle Scholar
  59. Fievet F, Brayner R (2013) The polyol process. In: Brayner R, Fievet F, Coradin T (eds) Nanomaterials: a danger or a promise? Springer, London. CrossRefGoogle Scholar
  60. Firdhouse MJ, Lalitha P (2014) Biocidal potential of biosynthesized silver nanoparticles against fungal threats. J Nanostruct Chem 5:25–33. CrossRefGoogle Scholar
  61. Foldbjerg R, Irving ES, Hayashi Y, Sutherland DS, Thorsen K, Autrup H, Beer C (2012) Global gene expression profiling of human lung epithelial cells after exposure to nanosilver. Toxicol Sci 130:145–157. CrossRefGoogle Scholar
  62. Founou RC, Founou LL, Essack SY (2017) Clinical and economic impact of antibiotic resistance in developing countries: a systematic review and meta-analysis. PLoS One 12(12):e0189621. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Franke S (2007) Microbiology of the toxic noble metal silver. In: Nies D, Silver S (eds) Molecular biology of heavy metals. Microbiology monographs. Springer, BerlinGoogle Scholar
  64. Friedman ND, Temkin E, Carmeli Y (2016) The negative impacts of antibiotic resistance. Clin Microbiol Infect 22:416–422. CrossRefGoogle Scholar
  65. Fu J, Rong G, Deng Y (2012) Mammalian cell cytotoxicity and genotoxicity of metallic nanoparticles. Adv Sci Lett 5(2):294–298. CrossRefGoogle Scholar
  66. Gaiser BK, Hirn S, Kermanizadeh A, Kanase N, Fytianos K, Wenk A, Haberl N, Brunelli A, Kreyling WG, Stone V (2013) Effects of silver nanoparticles on the liver and hepatocytes in vitro. Toxicol Sci 131(2):537–547. CrossRefPubMedGoogle Scholar
  67. Gavade SJM, Nikam GH, Dhabbe RS, Tamhankar BV, Mulik GN (2015) Green synthesis of silver nanoparticles by using carambola fruit extract and their antibacterial activity. Adv Nat Sci Nanosci Nanotechnol 6:045015. CrossRefGoogle Scholar
  68. Ge L, Li Q, Wang M, Ouyang J, Li X, Xing MMQ (2014) Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int J Nanomed 9:2399–2407Google Scholar
  69. Ghiuta I, Cristea D, Croitoru C, Kost J, Wenkert R, Vyrides I, Anayiotos A, Munteanu D (2018) Characterization and antimicrobial activity of silver nanoparticles, biosynthesized using Bacillus species. Appl Surf Sci 438(30):66–73. CrossRefGoogle Scholar
  70. Ghodake G, Lim SR, Lee DS (2013) Casein hydrolytic peptides mediated green synthesis of antibacterial silver nanoparticles. Colloids Surf B 108:147–151. CrossRefGoogle Scholar
  71. Gnanadhas DP, Thomas MB, Thomas R, Raichur AM, Chakravortty D (2013) Interaction of silver nanoparticles with serum proteins affects their antimicrobial activity in vivo. Antimicrob Agents Chemother 57(10):4945–4955. CrossRefPubMedPubMedCentralGoogle Scholar
  72. Goldstein FW (1999) Penicillin-resistant Streptococcus pneumoniae: selection by both β-lactam and non β-lactam antibiotics. J Antimicrob Chemother 44(2):141–144. CrossRefPubMedGoogle Scholar
  73. Golinska P, Wypij M, Rathod D, Tikar S, Dahm H, Rai M (2016a) Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities. J Basic Microbiol 56:541–556. CrossRefPubMedGoogle Scholar
  74. Golinska P, Wypij M, Rathod D, Tikar S, Dahm H, Rai M (2016b) Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities. J Basic Microbiol 56(5):541–556. CrossRefPubMedGoogle Scholar
  75. Gomez-Tamayo JC, Cordomi A, Olivella M, Mayol E, Fourmy D, Pardo L (2016) Analysis of the interactions of sulfur-containing amino acids in membrane proteins. Protein Sci 25:1517–1524. CrossRefPubMedPubMedCentralGoogle Scholar
  76. Gopinath P, Gogoi SK, Chattopadhyay A, Ghosh SS (2008) Implications of silver nanoparticle induced cell apoptosis for in vitro gene therapy. Nanotechnology 19:075104. CrossRefPubMedGoogle Scholar
  77. Gupta SS, Chakraborty I, Maliyekkal SM, Mark TA, Pandey DK, Das SK, Pradeep T (2015) Simultaneous dehalogination and removal of persistent halocarbon pesticides from waste water using grapheme nanocomposites: a case study of linade. Sustain Chem Eng 3:1155–1163. CrossRefGoogle Scholar
  78. Gupta A, Landis RF, Rotello VM (2016) Nanoparticle-based antimicrobials: surface functionality is critical. F1000Research 5:F1000 Faculty Rev-364. CrossRefPubMedPubMedCentralGoogle Scholar
  79. Gurunathan S, Raman J, Vikineswary S, Abd Malek SN, John P (2013) Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomed 8:4399–4413. CrossRefGoogle Scholar
  80. Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed NBM 8:37–45. CrossRefGoogle Scholar
  81. Habash MB, Park AJ, Vis EC, Harris RJ, Khursigara CM (2014) Synergy of silver nanoparticles and aztreonam against Pseudomonas aeruginosa PAO1 biofilms. Antimicrob Agents Chemother 58:5818–5830. CrossRefPubMedPubMedCentralGoogle Scholar
  82. Habash MB, Goodyear MC, Park AJ, Surette MD, Vis EC, Harris RJ, Khursigara CM (2017) Potentiation of tobramycin by silver nanoparticles against Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 61(11):e00415–e00417. CrossRefPubMedPubMedCentralGoogle Scholar
  83. Haefeli C, Franklin C, Hardy K (1984) Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. J Bacteriol 158:389–392PubMedPubMedCentralGoogle Scholar
  84. Hazarika SN, Gupta K, Shamin KNAM, Bhardwaj P, Boruah R, Yadav KK, Naglot A, Deb P, Mandal M, Doley R (2016) One-pot facile green synthesis of biocidal silver nanoparticles. Mater Res Exp 3:075401. CrossRefGoogle Scholar
  85. Holland SL, Dyer PS, Bond CJ, James SA, Roberts IN, Avery SV (2011) Candida argentea sp. nov., a copper and silver resistant yeast species. Fungal Biol 115:909–918. CrossRefPubMedGoogle Scholar
  86. Hoseinzadeh E, Makhdoumi P, Hossini H, Stelling J, Kamal MA, Ashgaf GM (2017) A review on nano-antimicrobials: metal nanoparticles, methods and mechanisms. Curr Drug Metabol 18(2):120–128. CrossRefGoogle Scholar
  87. Huang R, Lau BLT (2016) Biomolecule-nanoparticle interactions: elucidation of the thermodynamics by isothermal titration calorimetry. Biochim Biophys Acta 1860(5):945–956. CrossRefPubMedGoogle Scholar
  88. Hwang I-s, Hwang JH, Choi H, Kim K-J, Lee DG (2012) Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J Med Microbiol 61:1719–1726. CrossRefPubMedGoogle Scholar
  89. Ibrahim NA, Eid BM, Abdel-Aziz MS (2017) Effect of plasma superficial treatments on antibacterial functionalization and coloration of cellulosic fabrics. Appl Surf Sci 392:1126–1133. CrossRefGoogle Scholar
  90. Jacob JA, Mahal HS, Biswas N, Mukherjee T, Kapoor S (2008) Role of phenol derivatives in the formation of silver nanoparticles. Langmuir 24:528–533. CrossRefPubMedGoogle Scholar
  91. Jafari A, Nodooshan SJ, Safarkar R, Movahedzadeh F, Mosavari N, Kashani AN, Dehghanpour M, Kamalzadeh M, Koohi SR, Fathizadeh S, Majidpour A (2017) Toxicity effects of AgZnO nanoparticles and rifampicin on Mycobacterium tuberculosis into the macrophage. J Basic Microbiol 58(1):41–51. CrossRefPubMedGoogle Scholar
  92. Jain S, Mehata MS (2017) Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci Rep 7:15867. CrossRefPubMedPubMedCentralGoogle Scholar
  93. Jaiswal S, Mishra P (2017) Antimicrobial and antibiofilm activity of curcumin-silver nanoparticles with improved stability and selective toxicity to bacteria over mammalian cells. Med Microbiol Immunol 207(1):39–53. CrossRefPubMedGoogle Scholar
  94. Jamaran S, Zarif BR (2016) Synergistic effect of silver nanoparticles with neomycin or gentamicin antibiotics on mastitis-causing Staphylococcus aureus. Open J Ecol 6:452–459. CrossRefGoogle Scholar
  95. Javier A, Cervantes G, Reyes AC, Castillo EC, Rivas GG, Rivera OAO, Salinas E et al (2016) Synergistic antimicrobial effects of silver/transitional-metal combinatorial treatment. Sci Rep 7:903. CrossRefGoogle Scholar
  96. Jayaprakash N, Vijaya JJ, Kaviyarasu K, Kombaiah K, Kennedy LJ, Ramalingam RJ, Munusamy MA, Al-Lohedan HA (2017) Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies. J Photochem Photobiol B Biol 169:178–185. CrossRefGoogle Scholar
  97. Jelenko C 3rd (1969) Silver nitrate resistant E. coli: report of case. Anal Surg 170(2):299–300Google Scholar
  98. Jun BH, Noh MS, Kim J, Kim G, Kang H, Kim MS, Seo YT, Baek J, Kim JH, Park J et al (2010) Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications. Small 6:119–125. CrossRefPubMedGoogle Scholar
  99. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008a) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171. CrossRefPubMedPubMedCentralGoogle Scholar
  100. Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008b) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178. CrossRefPubMedPubMedCentralGoogle Scholar
  101. Jung J, Raghavendra GM, Kim D, Seo J (2018) An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomed Nanotechnol Biol Med 8:916–924. CrossRefGoogle Scholar
  102. Jyoti K, Baunthiyal M, Singh A (2016) Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J Radiat Res Appl Sci 9(3):217–227. CrossRefGoogle Scholar
  103. Karam G, Chastre J, Wilcox MH, Vincent J-L (2016) Antibiotic strategies in the era of multidrug resistance. Crit Care 20:136. CrossRefPubMedPubMedCentralGoogle Scholar
  104. Kassaee MZ, Mohammadkhani M, Akhavan A, Mohammadi R (2011) In situ formation of silver nanoparticles in PMMA via reduction of silver ions by butylated hydroxytoluene. Struct Chem 22:11–15. CrossRefGoogle Scholar
  105. Kathiraven T, Sundaramanickam A, Shanmugam N, Balasubramanian T (2014) Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their anti-bacterial activity against some human pathogens. Appl Nanosci 5:499–504. CrossRefGoogle Scholar
  106. Katva S, Das S, Moti HS, Jyoti A, Kaushik S (2017) Antibacterial synergy of silver nanoparticles with gentamicin and chloramphenicol against Enterococcus faecalis. Pharmacogn Mag 13(Suppl 4):S828–S833. CrossRefGoogle Scholar
  107. Kavya S, Das S, Moti HS, Jyoti A, Kaushik S (2018) Antibacterial synergy of silver nanoparticles with gentamicin and chloramphenicol against Enterococcus faecalis. Pharmacogn Mag 13(Suppl 4):S828–S833. CrossRefGoogle Scholar
  108. Kaweeteerawat C, Ubol PN, Sangmuang S, Aueviriyavit S, Maniratanachote R (2017) Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. J Toxicol Environ Health Part A 80(23–24):1276–1289. CrossRefPubMedGoogle Scholar
  109. Kim S, Ryu D-Y (2012) Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol 33:78. CrossRefPubMedGoogle Scholar
  110. Kim D, Jeong S, Moon J (2006) Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology 17:409–4024. CrossRefGoogle Scholar
  111. Kokila T, Ramesh PS. Geetha D (2016) Biosynthesis of AgNPs using Carica Papaya peel extract and evaluation of its antioxidant and antimicrobial activities. Ecotoxicol Environ Saf 134:467–473. CrossRefPubMedGoogle Scholar
  112. Koprivnjak T, Peschel A, Gelb MH, Liang NS, Weiss JP (2002) Role of charge properties of bacterial envelope in bactericidal action of human Group IIA phospholipase A2 against Staphylococcus aureus. J Biol Chem 277:47636–47644. CrossRefPubMedGoogle Scholar
  113. Kovacs D, Szoke K, Igaz N, Spengler G, Molnar J, Toth T, Madarasz D, Razga Z, Konya Z, Boros IM, Kirics M (2016) Silver nanoparticles modulate ABC transporter activity and enhance chemotherapy in multidrug resistant cancer. Nanomed NBM 12:601–610. CrossRefGoogle Scholar
  114. Kulkarni N, Muddapur U (2013) Biosynthesis of metal nanoparticles: a review. J Nanotechnol. (Article ID 510246) CrossRefGoogle Scholar
  115. Kulkarni AP, Srivastava AA, Nagalgaon RK, Zunjarrao RS (2012) Phytofabrication of silver nanoparticles from a novel plant source and its application. Int J Biol Pharm Res 3:417–421Google Scholar
  116. Kumar V, Yadav SK (2009) Plant mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157. CrossRefGoogle Scholar
  117. Kumar M, Bansal K, Gondil VS, Sharma S, Jain DVS, Chibber S, Sharma RK, Wangoo N (2018) Synthesis, characterization, mechanistic studies and antimicrobial efficacy of biomolecule capped and pH modulated silver nanoparticles. J Mol Liq 249:1145–1150. CrossRefGoogle Scholar
  118. Kumari M, Pandey S, Giri VP, Bhattacharya A, Shukla R, Mishra A, Nautiyal CS (2017) Tailoring shape and size of biogenic silver nanoparticles to enhance antimicrobial efficacy against MDR bacteria. Microb Pathog 105:346–355. CrossRefPubMedGoogle Scholar
  119. Kundu S, Wang K, Liang H (2009) Size-controlled synthesis and self-assembly of silver nanoparticles within a minute using microwave irradiation. J Phys Chem C 113:134–141. CrossRefGoogle Scholar
  120. Kuunal S, Kutti S, Rauwel P, Guha M, Wragg D, Rauwel E (2016) Biocidal properties study of silver nanoparticles used for application in green housing. Int Nano Lett 6:191–197. CrossRefGoogle Scholar
  121. Kyrychenko A, Pasko DA, Kalugin ON (2017) Poly(vinyl alcohol) as a water protecting agent for silver nanoparticles: the role of polymer size and structure. Phys Chem Chem Phys 19:8742–8756. CrossRefPubMedGoogle Scholar
  122. Lara HH, Garza-Trevino EN, Ixtepan-Turrent L, Singh DK (2011) Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol 9:30CrossRefGoogle Scholar
  123. Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Aberg C (2013) Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 135:1438–1444. CrossRefPubMedGoogle Scholar
  124. Li P, Li J, Wu C, WU Q, Li J (2005) Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16:1912–1917. doiCrossRefGoogle Scholar
  125. Li J, Wu Q, Wu J (2015) Synthesis of nanoparticles via solvothermal and hydrothermal methods. In: Aliofkhazraei M (ed) Handbook of Nanoparticles. Springer, Cham. Google Scholar
  126. Lin J, Huang Z, Wu H, Zhou W, Jin P, Wei P, Zhang Y, Zheng F, Zhang J, Xu J et al (2014) Inhibition of autophagy enhances the anticancer activity of silver nanoparticles. Autophagy 10:2006–2020. CrossRefPubMedPubMedCentralGoogle Scholar
  127. Liu L. Liu T, Tade M, Wang S, Li X, Liu S (2014) Less is more, greener microbial synthesis of silver nanoparticles. Enzyme Microb Technol 67:53–58. CrossRefPubMedGoogle Scholar
  128. Liu Y-S, Chang Y-C, Chen H-H (2018) Silver nanoparticle biosynthesis by using phenolic acids in rice husk extract as reducing agents and dispersants. J Food Drug Anal 26:649–656. CrossRefPubMedGoogle Scholar
  129. Liz-Marzan LM, Lado-Tourino I (1996) Reduction and stabilization of silver nanoparticles in ethanol by nonionic surfactants. Langmuir 12:3585–3589CrossRefGoogle Scholar
  130. Locatelli E, Naddaka M, Uboldi C, Loudos G, Fragogeorgi E, Molinari V, Pucci A, Tsotakos T, Psimadas D, Ponti J, Franchini MC (2014) Targeted delivery of silver nanoparticles and alisertib: in vitro and in vivo synergistic effect against glioblastoma. Nanomedicine 9:839–849. CrossRefPubMedGoogle Scholar
  131. Logeswari P, Silambarasan J, Abraham J (2015) Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J Saudi Chem Soc 19:311–317. CrossRefGoogle Scholar
  132. Loose M, Mitchison TJ (2014) The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns. Nat Cell Biol 16:38. CrossRefPubMedGoogle Scholar
  133. Lu H, Yu L, Liu Q, Du J (2013) Ultrafine silver nanoparticles with excellent antibacterial efficacy prepared by a handover of vesicle templating to micelle stabilization. Polym Chem 4:3448–3452. CrossRefGoogle Scholar
  134. Maciollek A, Ritter H (2014) One pot synthesis of silver nanoparticles using a cyclodextrin containing polymer as reductant and stabilizer. Beilestein J Nanotechnol 5:380–385CrossRefGoogle Scholar
  135. Mahshid S, Askari M, Ghamsari MS (2007) Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. J Mater Process Technol 189(1–3):296–300. CrossRefGoogle Scholar
  136. Makarov V, Love A, Sinitsyna O, Yaminsky SMI, Taliansky M, Kalinina N (2014) Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat 6:35–44Google Scholar
  137. Malanovik N, Lohner K (2016) Gram-positive bacterial cell envelopes: the impact on the activity of antimicrobial peptides. Biochim Biophys Acta Biomembr 1858:936–946. CrossRefGoogle Scholar
  138. Malik MA, Wani MY, Hashim MA (2012) Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials: 1st nano update. Arab J Chem 5(4):397–417. CrossRefGoogle Scholar
  139. Manimegalai G, Shanthakumar S, Sharma C (2012) Pesticide mineralization in water using silver nanoparticles incorporated on polyurethane foam. Int J Sci Res 1:91–94. CrossRefGoogle Scholar
  140. Manimegalai G, Shanthakumar S, Sharma C (2014) Silver nanoparticles: synthesis and application in mineralization of pesticides using membrane support. Int Nano Lett 4:105. CrossRefGoogle Scholar
  141. Marambio-Jones C, Hoek EM (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551. CrossRefGoogle Scholar
  142. Marin S, Vlasceanu GM, Tiplea RE, Bucur IR, Lemnaru M, Marin MM, Grumezescu AM (2015) Applications and toxicity of silver nanoparticles: a recent review. Curr Top Med Chem 15:1596–1604. CrossRefPubMedGoogle Scholar
  143. Martínez-Castañón GA, Niño-Martínez N, Martínez-Gutierrez F, Martínez-Mendoza JR, Ruiz F (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10(8):1343–1348. CrossRefGoogle Scholar
  144. Mashwani ZR, Khan MA, Khan T, Nadhman A (2016) Applications of plant terpenoids in the synthesis of colloidal silver nanoparticles. Adv Colloid Interface Sci 234:132–141. CrossRefPubMedGoogle Scholar
  145. McHugh GL, Moellering RC, Hopkins CC, Swartz MN (1975) Salmonella typhimurium resistant to silver nitrate, chloramphenicol, and ampicillin. Lancet 305:235–240. CrossRefGoogle Scholar
  146. Merga G, Wilson R, Lynn G, Milosavljevic B, Meisel D (2007) Redox catalysis on “naked” silver nanoparticles. J Phys Chem C 111:12220–12226. CrossRefGoogle Scholar
  147. Miclaus T, Beer C, Chevallier J, Scavenius C, Bochenkov VE, Enghild JJ, Sutherland DS (2016) Dynamic protein coronas revealed as a modulator of silver nanoparticle sulphidation in vitro. Nat Commun 7:11770. CrossRefPubMedPubMedCentralGoogle Scholar
  148. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356. CrossRefPubMedPubMedCentralGoogle Scholar
  149. Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2(4):282–289. CrossRefPubMedPubMedCentralGoogle Scholar
  150. Mohan YM, Vimala K, Thomas V, Varaprasad K, Sreedhar B, Bajpai SK, Raju KM (2010) Controlling of silver nanoparticles structure by hydrogel networks. J Colloid Interface Sci 342:73–82. CrossRefGoogle Scholar
  151. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005a) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353. doiCrossRefPubMedGoogle Scholar
  152. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005b) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346. CrossRefPubMedGoogle Scholar
  153. Moteria P, Padalia H, Chanda S (2017) Characterization, synergistic antibacterial and free radical scavenging efficacy of silver nanoparticles synthesized using Cassia roxburghii leaf extract. J Gen Eng Biotechnol 15(2):505–513. CrossRefGoogle Scholar
  154. Nagy A, Harrison A, Sabbani S, Munson RS Jr, Dutta PK, Waldman WJ (2011) Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. Int J Nanomed 6:1833–1852. CrossRefGoogle Scholar
  155. Naik MM, Prabhu MS, Samant SN, Naik PM, Shirodkar S (2017) Synergistic action of silver nanoparticles synthesized from silver resistant Estuarine Pseudomonas aeruginosa strain SN5 with antibiotics against antibiotic resistant bacterial human pathogens. Thalassas 33(1):73–80. CrossRefGoogle Scholar
  156. Navya PN, Daima HK (2016) Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Converg 3:1. CrossRefPubMedPubMedCentralGoogle Scholar
  157. Neethu S, Midhun SJ, Radhakrishnan EK, Jyothis M (2018a) Green synthesized silver nanoparticles by marine endophytic fungus Penicillium polonicum and its antibacterial efficacy against biofilm forming, multidrug-resistant Acinetobacter baumannii. Microb Pathogen 116:263–272. CrossRefGoogle Scholar
  158. Neethu S, Midhun SJ, Sunil MA, Soumya S, Radhakrishnan EK, Jyothis M (2018b) Efficient visible light induced synthesis of silver nanoparticles by Penicillium polonicum ARA 10 isolated from Chetomorpha antennina and its antibacterial efficacy against Salmonella enterica serovar Typhimurium. J Photochem Photobiol B Biol 180:175–185. CrossRefGoogle Scholar
  159. Oliveira M, Ugarte D, Zanchet D, Zarbin A (2005) Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. J Colloid Interface Sci 292:429–435. CrossRefPubMedGoogle Scholar
  160. Omran BA, Nassar HN, Fatthallah NA, Hamdy A, El-Shatoury EH, El-Gendy NS (2018) Characterization and antimicrobial activity of silver nanoparticles mycosynthesized by Aspergillus brasiliensis. J Appl Microbiol. CrossRefPubMedGoogle Scholar
  161. Ottoni CA, Simões MF, Fernandes S, do Santos JG, Da Silva ES, de Souza RFB, Maiorano AE (2017) Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express 7:31. CrossRefPubMedPubMedCentralGoogle Scholar
  162. Pallavi MCM, Srivastava R, Arora S, Sharma AK (2016) Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 6(2):254. CrossRefPubMedPubMedCentralGoogle Scholar
  163. Panacek A, Smekalova M, Vecerova R, Bogdanova K, Roderova M, Kolar M, Killianova M, Hradilova S, Froning JP, Havrdova M, Prucek R, Zboril R, Kvitek L (2016) Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae. Colloids Surf B Biointerfaces 142:392–399. CrossRefPubMedGoogle Scholar
  164. Parikh RY, Singh S, Prasad BLV, Patole MS, Sastry M, Shouche YS (2008) Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp. Towards Underst Biochem Synth Mech ChemBioChem 9:1415–1422. CrossRefGoogle Scholar
  165. Paterson DL (2006) Resistance in gram-negative bacteria: Enterobacteriaceae. Am J Med 119:S20–S28. CrossRefPubMedGoogle Scholar
  166. Patra JK, Baek K-H (2017) Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Front Microbiol 8:167. CrossRefPubMedPubMedCentralGoogle Scholar
  167. Pazos-Ortiz E, Roque-Ruiz JH, Hinojos-Márquez EA et al (2017) Dose-dependent antimicrobial activity of silver nanoparticles on polycaprolactone fibers against gram-positive and gram-negative bacteria. J Nanomater. (Article ID 4752314) CrossRefGoogle Scholar
  168. Peyrot C, Wilkinson KJ, Desrosiers M, sauve S (2014) Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environ Toxicol Chem 33:115–125. CrossRefPubMedGoogle Scholar
  169. Phanjom P, Ahmed G (2017) Effect of different physicochemical conditions on the synthesis of silver nanoparticles using fungal cell filtrate of Aspergillus oryzae (MTCC No. 1846) and their antibacterial effect. Adv Nat Sci Nanosci Nanotechnol 8(4):045016. CrossRefGoogle Scholar
  170. Pillai ZS, Kamat PV (2004) What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J Phys Chem B 108:945–951. CrossRefGoogle Scholar
  171. Ping L, Li J, Wu C, Wu Q, Li J (2005) Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16(9):1912–1917. CrossRefGoogle Scholar
  172. Plyuta BA, Andreenko JV, Kuznetsov AE, Khmel IA (2013) Formation of Pseudomonas aeruginosa PAO1 biofilms in the presence of hydrogen peroxide. The effect of the aiiA gene. Mol Genet Microbiol Virol 28:141. CrossRefGoogle Scholar
  173. Pooja, Prasher P, Singh P, Pawar K, Vikramdeo KS, Mondal N, Komath SS (2014) Synthesis of amino acid appended indoles: appreciable anti-fungal activity and inhibition of ergosterol biosynthesis as their probable mode of action. Eur J Med Chem 80:325–339. CrossRefPubMedGoogle Scholar
  174. Popli D, Anil V, Subramanyam AB, Namratha MN, Ranjitha VR, Rao SN, Rai RV, Govindappa M (2018) Endophyte fungi, Cladosporium species-mediated synthesis of silver nanoparticles possessing in vitro antioxidant, anti-diabetic and anti-Alzheimer activity. Artif Cells Nanomed Biotechnol. CrossRefPubMedGoogle Scholar
  175. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32. CrossRefGoogle Scholar
  176. Pramanik S, Chatterjee S, Saha A, Devi PS, Kumar GS (2016) Unraveling the interaction of silver nanoparticles with mammalian and bacterial DNA. J Phys Chem B 120:5313–5324. CrossRefPubMedGoogle Scholar
  177. Prasher P, Sharma M (2018) Medicinal chemisry of acridine and its analogues. MedChemComm. CrossRefGoogle Scholar
  178. Prasher P, Singh M, Mudila H (2018a) Green synthesis of silver nanoparticles and their antifungal properties. BioNanoScience 8(1):254–263. CrossRefGoogle Scholar
  179. Prasher P, Singh M, Mudila H (2018b) Oligodynamic effect of silver nanoparticles: a review. BioNanoScience. (Accepted) CrossRefGoogle Scholar
  180. Prema P, Thangapandiyan S, Immanuel G (2017) CMC stabilized nano silver synthesis, characterization and its antibacterial and synergistic effect with broad spectrum antibiotics. Carbohydr Polym 158:141–148. CrossRefPubMedGoogle Scholar
  181. Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM (2014) Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles. Int J Nanomed 9:1883–1889CrossRefGoogle Scholar
  182. Pulit J, Banach M, Szczyglowska R, Bryk M (2013) Nanosilver against fungi. Silver nanoparticles as an effective biocidal factor. Acta Biochim Polonica 60:795–798Google Scholar
  183. Qin Y, Ji X, Jing J, Liu H, Wu H, Yang W (2010) Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids Surf A Physicochem Eng Asp 372:172–176. CrossRefGoogle Scholar
  184. Quadros ME, Marr LC (2012) Environmental and human health risks of aerosolized silver nanoparticles. J Air Waste Manag Assoc 60:770–781. CrossRefGoogle Scholar
  185. Quinteros MA, Martínez IMA, Dalmasso PR, Páez PL (2016) Silver nanoparticles: biosynthesis using an ATCC reference strain of Pseudomonas aeruginosa and activity as broad spectrum clinical antibacterial agents. Int J Biomater. (Article ID 5971047) CrossRefPubMedPubMedCentralGoogle Scholar
  186. Radic S (2015) Biophysical interaction between nanoparticles and biomolecules. All Dissertations. Paper 1517Google Scholar
  187. Radzig MA, Nadtochenko VA, Koksharova OA, Kiwi J, Lipasova VA, Khmel IA (2013) Antibacterial effects of silver nanoparticles on gram-negative bacteria: influence on the growth and biofilms formation, mechanisms of action. Colloid Surf B Biointerfaces 102:300–306. CrossRefPubMedGoogle Scholar
  188. Rahimi-Nasrabadi M, Pourmortazavi SM, Shandiz SAS, Ahmadi F, Batooli H (2014) Green synthesis of silver nanoparticles using Eucalyptus leucoxylon leaves extract and evaluating the antioxidant activities of the extract. Nat Prod Res 28:1964–1969. CrossRefPubMedGoogle Scholar
  189. Rangarajan S, Verekar S, Deshmukh SK, Bellare JR, Balakrishnan A, Sharma S, Vidya R, Chimote G (2017) Evaluation of anti-bacterial activity of silver nanoparticles synthesised by coprophilous fungus PM0651419. IET Nanobiotechnol 12(2):106–115. CrossRefGoogle Scholar
  190. Rao B, Tang R-C (2017) Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf extract. Adv Nat Sci Nanosci Nanotechnol 8:015014. CrossRefGoogle Scholar
  191. Rathod D, Golinska P, Wypij M, Dahm H, Rai M (2016) A new report of Nocardiopsis valliformis strain OT1 from alkaline Lonar crater of India and its use in synthesis of silver nanoparticles with special reference to evaluation of antibacterial activity and cytotoxicity. Med Microbiol Immunol 205(5):435–447. CrossRefPubMedPubMedCentralGoogle Scholar
  192. Ribeiro MJ, Maria VL, Scott-Fordsmand JJ, Amorim MJB (2015) Oxidative stress mechanisms caused by Ag nanoparticles (NM300K) are different from those of AgNO3: effects in the soil invertebrate Enchytraeus crypticus. Int J Environ Res Public Health 12:9589. CrossRefPubMedPubMedCentralGoogle Scholar
  193. Riggle PJ, Kumamoto CA (2000) Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity. J Bacteriol 182(17):4899–4905CrossRefGoogle Scholar
  194. Roopan SM, Madhumitha G, Rahuman AA, Kamaraj C, Bharathi A, Surendra T (2013) Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind Crops Prod 43:631–635. CrossRefGoogle Scholar
  195. Sadeghi B, Gholamhoseinpoor F (2015) A study on stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim Acta Part A Mol Biomol Spectrosc 134:310–315. CrossRefGoogle Scholar
  196. Sadeghi B, Rostami A, Momei SS (2015) Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochim Acta Part A Mol Biomol Spectrosc 134:326–332. CrossRefGoogle Scholar
  197. Sáez V, Mason TJ (2009) Sonoelectrochemical synthesis of nanoparticles. Molecules 14:4284–4299. CrossRefPubMedGoogle Scholar
  198. Sambalova O, Thorwarth K, Heeb NV, Bleiner D, Zhang Y, Borgschulte A, Kroll A (2018) Carboxylate functional groups mediate interaction with silver nanoparticles in biofilm matrix. ACS Omega 3:724–733. CrossRefPubMedPubMedCentralGoogle Scholar
  199. Samberg ME, Orndorff PE, Monteiro-Riviere NA (2011) Antibacterial efficacy of silver nanoparticles of different sizes, surface conditions and synthesis methods. Nanotoxicology 5(2):244–253. CrossRefPubMedGoogle Scholar
  200. Sanpui P, Chattopadhyay A, Ghosh SS (2011) Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl Mater Interfaces 3:218–228. CrossRefPubMedGoogle Scholar
  201. Sanyasi S, Majhi RK, Kumar S, Mishra M, Ghosh A, Suar M, Satyam PV, Mohapatra H, Goswami C, Goswami L (2016) Polysaccharide-capped silver nanoparticles inhibit biofilm formation and eliminate multidrug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Sci Rep 6:24929. CrossRefPubMedPubMedCentralGoogle Scholar
  202. Saratale GD, Saratale RG, Benelli G, Kumar G, Pughazendhi A, Kim D-S, Shin H-S (2017) Anti-diabetic potential of silver nanoparticles synthesized with Argyreia nervosa leaf extract high synergistic antibacterial activity with standard antibiotics against foodborne bacteria. J Clust Sci 28(3):1709–1727. CrossRefGoogle Scholar
  203. Saravanakumar K, Wang M-H (2018) Trichoderma based synthesis of anti-pathogenic silver nanoparticles and their characterization, antioxidant and cytotoxicity properties. Microb Pathog 114:269–273. CrossRefPubMedGoogle Scholar
  204. Saravanan C, Rajesh R, Kaviarasan T, Muthukumar K, Kavitake D, Shetty PH (2017) Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnol Rep 15:33–40. CrossRefGoogle Scholar
  205. Saravanan M, Arokiyaraj S, Lakshmi T, Pugazhendi A (2018a) Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microb Pathog 117:68–72. CrossRefPubMedGoogle Scholar
  206. Saravanan M, Barik SK, Ali DM, Prakash P, Pugazhendhi A (2018b) Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb Pathog 116:221–226CrossRefGoogle Scholar
  207. Satapathy S, Kumar S, Sukhdane KS, Shukla SP (2017) Biogenic synthesis and characterization of silver nanoparticles and their effects against bloom-forming algae and synergistic effect with antibiotics against fish pathogenic bacteria. J Appl Phycol 29(4):1865–1875. CrossRefGoogle Scholar
  208. Schacht VJ, Neumann LV, Sandhi SK, Chen L, Henning T, Klar PJ, Theophel K, Schnell S, Bunge M (2012) Effects of silver nanoparticles on microbial growth dynamics. J Appl Microbiol 114:25–35. CrossRefPubMedGoogle Scholar
  209. Shafaghat A (2014) Synthesis and characterization of silver nanoparticles by phytosynthesis method and their biological activity. Synth React Inorg Met Org Nano-Met Chem 45: 381–387. CrossRefGoogle Scholar
  210. Shaik MR, Khan M, Kuniyil M, Al-Warthan A, Alkhathlan HZ, Siddiqui MRH, Shaik JP, Ahamed A, Mahmood A, Khan M, Adil SF (2018) Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. extract and their microbicidal activities. Sustainability 10:913. CrossRefGoogle Scholar
  211. Shanmuganathan R, Ali DM, Prabakar D, Muthukumar H, Thajuddin N, Kumar SS, Pugazhendi A (2018) An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach. Environ Sci Pollut Res 25(11):10362–10370. CrossRefGoogle Scholar
  212. Sharifi I, Zamanian A, Behnamghader A (2016) A Simple thermal decomposition method for synthesis of Co0.6Zn0.4Fe2O4 magnetic nanoparticles. J Ultrafine Grain Nanostruct Mater 49:87–91. CrossRefGoogle Scholar
  213. Sharma VK (2013) Stability and toxicity of silver nanoparticles in aquatic environment: a review. In: Sustainable nanotechnology and the environment: advances and achievements. ACS symposium series. Chapter 10, pp 16–179. Google Scholar
  214. Shende S, Gade A, Rai M (2017) Large-scale synthesis and antibacterial activity of fungal-derived silver nanoparticles. Environ Chem Lett 15(3):427–434. CrossRefGoogle Scholar
  215. Shin Y-J, Kwak JL, An Y-J (2012) Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere 88:524–529. CrossRefPubMedPubMedCentralGoogle Scholar
  216. Shriniwas PP, Subhash TK (2017) Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves. Biochem Biophys Rep 10:76–81. CrossRefGoogle Scholar
  217. Siddiqi KS, Husen A, Rao RAK (2018) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol 16:14. CrossRefGoogle Scholar
  218. Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27(2–3):341–353CrossRefGoogle Scholar
  219. Silvero CMJ, Rocca DM, de la Villarmois EA, Fournier K, Lanterna AE, Perez MF, Becerra MC, Scaiano JC (2018) Selective photoinduced antibacterial activity of amoxicillin-coated gold nanoparticles: from one-step synthesis to in vivo cytocompatibility. ACS Omega 3(1):1220–1230. CrossRefGoogle Scholar
  220. Simakova P, Gautier J, Prochazka M, Herve-Aubert K, Chourpa I (2014) Polyethylene-glycol-stabilized Ag nanoparticles for surface-enhanced raman scattering spectroscopy: Ag surface accessibility studied using metalation of free-base porphyrins. J Phys Chem C 118:7690–7697. CrossRefGoogle Scholar
  221. Singh M, Prasher P (2018) Ultrafine silver nanoparticles: synthesis and biocidal studies. BioNanoSci 8:735–741. CrossRefGoogle Scholar
  222. Singh BR, Singh BN, Singh A, Khan W, Naqvi AH, Singh HB (2015) Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems. Sci Rep 5:13719. CrossRefPubMedPubMedCentralGoogle Scholar
  223. Singh S, Singh SK, Chowdhury I, Singh R (2017a) Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J 11:53. CrossRefPubMedPubMedCentralGoogle Scholar
  224. Singh T, Jyoti K, Patnaik A, Singh A, Chauhan R, Chandel SS (2017b) Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus. J Gen Eng Biotechnol 15(1):31–39. CrossRefGoogle Scholar
  225. Singh R, Vora J, Nadhe SB, Wadhwani SA, Shedbalkar UU, Chopade BA (2018) Antibacterial activities of bacteriagenic silver nanoparticles against nosocomial Acinetobacter baumannii. Nanosci Nanotechnol 18(6):3806–3815. CrossRefGoogle Scholar
  226. Siriwardana K, Wang A, Gadogbe M, Collier WE, Fitzkee NC, Zhang D (2015) Studying the effects of cysteine residues on protein interactions with silver nanoparticles. J Phys Chem C Nanomater Interfaces 119:2910–2916. CrossRefPubMedPubMedCentralGoogle Scholar
  227. Smekalova M, Aragon V, Panacek A, Prucek R, Zboril R, Kvitek L (2016) Enhanced antibacterial effect of antibiotics in combination with silver nanoparticles against animal pathogens. Vet J 209:174–179. CrossRefPubMedGoogle Scholar
  228. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135. CrossRefPubMedGoogle Scholar
  229. Suh JS, DiLella DP, Moskovits M (1983) Surface-enhanced Raman spectroscopy of colloidal metal systems: a two-dimensional phase equilibrium in p-aminobenzoic acid adsorbed on silver. J Phys Chem 87:1540–1544. CrossRefGoogle Scholar
  230. Sui R, Charpentier P (2012) Synthesis of metal oxide nanostructures by direct sol–gel chemistry in supercritical fluids. Chem Rev 112(6):3057–3082. CrossRefPubMedGoogle Scholar
  231. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179. CrossRefPubMedGoogle Scholar
  232. Sun X, Shi J, Zou X, Wang C, Yanh Y, Zhang H (2016) Silver nanoparticles interact with the cell membrane and increase endothelial permeability by promoting VE-cadherin internalization. J Hazard Mater 317:570–578. CrossRefPubMedGoogle Scholar
  233. Tanvir S, Oudet F, Pulvin S, Anderson WA (2012) Coenzyme based synthesis of silver nanocrystals. Enzyme Microb Technol 51(4):231–236. CrossRefPubMedGoogle Scholar
  234. Thirumurugan G, Seshagiri Rao JVLN, Dhanaraju MD (2016) Elucidating pharmacodynamic interaction of silver nanoparticle—topical deliverable antibiotics. Sci Rep 6:29982. CrossRefPubMedPubMedCentralGoogle Scholar
  235. Tippayawat P, Sapa V, Srijampa S, Boueroy P, Chompoosor A (2017) d-Maltose coated silver nanoparticles and their synergistic effect in combination with ampicillin. Monatsh Chem 148(7):1197–1203. CrossRefGoogle Scholar
  236. Toh HS, Batchelor-McAuley C, Tschulik K, Compton RG (2014) Chemical interactions between silver nanoparticles and thiols: a comparison of mercaptohexanol against cysteine. Sci China Chem 57:1199–1210. CrossRefGoogle Scholar
  237. Ugru MM, Sheshadri S, Jain D, Madhyastha H, Madhyastha R, Maruyama M, Navya PN, Daima HK (2018) Insight into the composition and surface corona reliant biological behaviour of quercetin engineered nanoparticles. Colloids Surf A Physicochem Eng Asp 548:1–9. CrossRefGoogle Scholar
  238. Van Hyning DL, Zukoski CF (1998) Formation mechanisms and aggregation behavior of borohydride reduced silver particles. Langmuir 14:7034–7040. CrossRefGoogle Scholar
  239. Van der Wal A, Norde W, Zehnder AJB, Lyklema J (1997) Determination of the total charge in the cell walls of Gram-positive bacteria. Colloid Surf B Biointerfaces 9:81–100. CrossRefGoogle Scholar
  240. Vanlalveni C, Rajkumar K, Biswas A, Adhikari PP, Lalfakzuala R, Rokhum L (2018) Green synthesis of silver nanoparticles using nostoc linckia and its antimicrobial activity: a novel biological approach. BioNanoScience. CrossRefGoogle Scholar
  241. Velayutham K, Rahuman AA, Rajakumar G, Roopan SM, Elango G, Kamaraj C, Marimuthu S, Santhoshkumar T, Iyappan M, Siva C (2013) Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pac J Trop Med 6:95–101. CrossRefPubMedGoogle Scholar
  242. Vélez E, Campillo G, Morales G, Hincapié C, Osorio J, Arnache O (2018) Silver nanoparticles obtained by aqueous or ethanolic aloe vera extracts: an assessment of the antibacterial activity and mercury removal capability. J Nanomater. (Article ID 7215210) CrossRefGoogle Scholar
  243. Wang C, Kim YJ, Singh P, Mathiyalagan R, Jin Y, Yang DC (2016) Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artif Cells Nanomed Biotechnol 44(4):1127–1132. CrossRefPubMedGoogle Scholar
  244. Wang G, Hou H, Wang S, Yan C, Liu Y (2017a) Exploring the interaction of silver nanoparticles with lysozyme: binding behaviors and kinetics. Colloids Surf B Biointerfaces 157(1):138–145. CrossRefPubMedGoogle Scholar
  245. Wang J, Shu K, Zhang L, SI Y (2017b) Effects of silver nanoparticles on soil microbial communities and bacterial nitrification in suburban vegetable soils. Pedosphere 27:482–490. CrossRefGoogle Scholar
  246. Wang K, Ji Q, Guan F, Li H, Li C, Feng H, Fan H (2017c) Photochemical synthesis of carbon@silvernanocomposites and their synergistic antibacterial effect with cephalexin. J Biomater Tissue Eng 7(8):715–720. CrossRefGoogle Scholar
  247. Wang C, Wen J, Chen S, Kumara SM, Rani SU, Sayeed AM, Ahmad U (2018) Biogenic synthesis, characterization and evaluation of silver nanoparticles from Aspergillus niger JX556221 against human colon cancer cell line HT-29. J Nanosci Nanotechnol 18(5):3673–3681. CrossRefGoogle Scholar
  248. Wei L, Lu J, Xu H, Patel A, Chen Z-S, Chen G (2015) Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today 20:595–601. CrossRefPubMedGoogle Scholar
  249. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 200:138–157. CrossRefPubMedGoogle Scholar
  250. Wigginton NS, de Titta A, Piccapietra F, Dobias J, Nesatyy VJ, Suter MJF, Bernier-Latmani R (2010) Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. Environ Sci Technol 44(6):2163–2168. CrossRefPubMedGoogle Scholar
  251. Wiley B, Sun Y, Mayers B, Xi Y (2005) Shape-controlled synthesis of metal nanostructures: the case of silver. Chem Eur J 11:454–463. CrossRefPubMedGoogle Scholar
  252. World Health Organization (WHO) (2014) Antimicrobial resistance: global report on surveillance. Accessed 30 July 2018
  253. Wu W, Wu Z, Yu T, Jiang C, Kim WS (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16(2):023501. CrossRefPubMedPubMedCentralGoogle Scholar
  254. Wypij M, Czarnecka J, Dahm H, Rai M, Golinska P (2017a) Silver nanoparticles from Pilimelia columellifera subsp. pallidaSL19 strain demonstrated antifungal activity against fungi causing superficial mycoses. J Basic Microbiol 57(9):793–800. CrossRefPubMedGoogle Scholar
  255. Wypij M, Golinska P, Dahm H, Rai M (2017b) Actinobacterial-mediated synthesis of silver nanoparticles and their activity against pathogenic bacteria. IET Nanobiotechnol 11(3):336–342. CrossRefPubMedGoogle Scholar
  256. Wypij M, Czarnecka J, Świecimska M, Dahm H, Rai M, Golinska P (2018) Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain. World J Microbiol Biotechnol 34(2):23. CrossRefPubMedPubMedCentralGoogle Scholar
  257. Xiong Z-C, Yang Z-Y, Zhu Y-J, Chen F-F, Zhang Y-G, Yang R-L (2017) Ultralong hydroxyapatite nanowires-based paper co-loaded with silver nanoparticles and antibiotic for long-term antibacterial benefit. ACS Appl Mater Interfaces 9(27):22212–22222. CrossRefPubMedGoogle Scholar
  258. Yadav K, Yadav A, Prasher P, Mishra S, Singh B, Komath SS, Singh P (2015) Identification of an indole-triazole-amino acid conjugate as highly effective antifungal agent. Med Chem Commun 6:1352–1359. CrossRefGoogle Scholar
  259. Yilmaz O, Spooner R (2011) The role of reactive-oxygen-species in microbial persistence and inflammation. Int J Mol Sci 12:334. CrossRefPubMedPubMedCentralGoogle Scholar
  260. Yuan Y-G, Peng Q-L, Gurunathan S (2017) Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: an alternative approach for antimicrobial therapy. Int J Mol Sci 18:569. CrossRefPubMedCentralGoogle Scholar
  261. Zhang D, Yang H (2013) Synthesis of biomacromolecule-stabilized silver nanoparticles and their surface-enhanced Raman scattering properties. Appl Phys A 112(3):739–745. CrossRefGoogle Scholar
  262. Zhang X-F, Liu Z-G, Shen W, Gurunathan S (2016a) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17(9):1534. (Yan B, ed) CrossRefPubMedCentralGoogle Scholar
  263. Zhang X-F, Shen W, Gurunathan S (2016b) Silver nanoparticle-mediated cellular responses in various cell lines: an in vitro model. Int J Mol Sci 17:1603. CrossRefPubMedCentralGoogle Scholar
  264. Zhao X, Drlica K (2014) Reactive oxygen species and the bacterial response to lethal stress. Curr Opin Microbiol 0:1. CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Parteek Prasher
    • 1
    Email author
  • Manjeet Singh
    • 1
  • Harish Mudila
    • 2
    • 3
  1. 1.Department of ChemistryUniversity of Petroleum and Energy StudiesDehradunIndia
  2. 2.Lovely Professional UniversityPunjabIndia
  3. 3.Govind Ballabh Pant University of Agriculture and TechnologyPantnagarIndia

Personalised recommendations