Advertisement

3 Biotech

, 8:384 | Cite as

Usnic acid causes apoptotic-like death in Leishmania major, L. infantum and L. tropica

  • Mehmet Kürşat Derici
  • Demet Cansaran-Duman
  • Ayşegül Taylan-Özkan
Original Article
  • 49 Downloads

Abstract

Leishmaniasis, a deadly parasitic infection, threatens many people worldwide. Since the high cost, toxicity, and resistance are drawbacks of current treatment options, it is necessary to find safer and more effective new antileishmanial drugs. The aim of this study was to determine the antileishmanial activity of usnic acid and its apoptotic mechanism on Leishmania spp. promastigotes. The antileishmanial activity was evaluated by MTT assay and apoptosis-related gene expression was investigated by qRT-PCR. Usnic acid was to be effective against Leishmania major, L. infantum, and L. tropica promastigotes at IC50 = 10.76 µg/ml, 13.34 µg/ml, and 21.06 µg/ml, respectively. We also demonstrated a novel mechanism by which usnic acid inhibited proliferation and caused apoptosis; usnic acid upregulated p53, Bax, Casp-3, and Casp-9 gene expression and downregulated the level of Bcl-2 gene expression. Accordingly, the expression level of the P53 gene increased in L. major, L. infantum and L. tropica by 14.4-, 11.8-, and 9.5-fold, respectively, and in contrast, the Bcl-2 gene expression decreased in all three leishmaniasis by 0.8-, 0.8-, and 0.7-fold, respectively. The present study, therefore, revealed that usnic acid played a critical role in the usnic acid-induced apoptotic process in Leishmania species. Usnic acid is easily accessible and an inexpensive agent, and can be considered as an alternative therapeutic agent for Leishmania infections subject to further tests in animal models.

Keywords

Leishmania Lichen Usnic acid qRT-PCR Apoptosis 

Notes

Acknowledgements

The authors are thankful to Dr. Selma Usluca from the National Parasitology Laboratory, Turkish Public Health Agency (Ankara, Turkey), for providing the Leishmania species.

Funding

This study was supported by Hitit University (Grant no: TIP19002.16.001).

Compliance with ethical standards

Conflict of interest

No competing financial interest exists.

References

  1. Albakhit S, Khademvatan S, Doudi M, Foroutan-Rad M (2016) Antileishmanial activity of date (Phoenix dactylifera L) fruit and pit extracts in vitro. J Evid Based Complement Altern Med 21(4):NP98–NP102CrossRefGoogle Scholar
  2. Araujo AA, de Melo MG, Rabelo TK, Nunes PS, Santos SL, Serafini MR, Santos MR, Quintans-Junior LJ, Gelain DP (2015) Review of the biological properties and toxicity of usnic acid. Nat Prod Res 29(23):2167–2180CrossRefPubMedGoogle Scholar
  3. Arik Yilmaz E, Tanir G, Tuygun N, Taylan Ozkan A (2009) Visceral leishmaniasis in 13 pediatric patients in Turkey: treatment experience. Turkiye Parazitol Derg 33(4):259–262PubMedGoogle Scholar
  4. Cansaran D, Kahya D, Yurdakulol E, Atakol O (2006) Identification and quantitation of usnic acid from the lichen Usnea species of Anatolia and antimicrobial activity. Zeitschrift für Naturforsc C 61:773–776CrossRefGoogle Scholar
  5. Cansaran D, Atakol O, Halıcı MG, Aksoy A (2007) HPLC analysis of the usnic acid in some Ramalina species from Anatolia and investigation of their antimicrobial activities. Pharm Biol 45(1):77–81CrossRefGoogle Scholar
  6. Cansaran-Duman D, Halıcı MG (2012) Antimicrobial activity of usnic acid on Squamarina lentigera lichen species. Turk Hij Den Biyol Derg 69(3):127–134CrossRefGoogle Scholar
  7. Carvalho EAB, Andrade PP, Silva NH, Pereira EC, Figueiredo RCBQ (2005) Effect of usnic acid from the lichen Cladonia substellata on Trypanosoma cruzi in vitro: an ultrastructural study. Micron 36(2):155–161CrossRefPubMedGoogle Scholar
  8. Chu W, Li X, Li C, Wan L, Shi H, Song X (2011) TGFBR3, a potential negative regulator of TGF-beta signaling, protects cardiac fibroblasts from hypoxia-induced apoptosis. J Cell Physiol 226:2586–2594CrossRefPubMedGoogle Scholar
  9. Cocchietto M, Skert N, Nimis PL, Sava G (2002) A review on usnic acid, an interesting natural compound. Naturwissen 89:137–146CrossRefGoogle Scholar
  10. Copeland NK, Aronson NE (2015) Leishmaniasis: treatment updates and clinical practice guidelines review. Curr Opin Infect Dis 28(5):426–437CrossRefPubMedGoogle Scholar
  11. Dincer D, Arca E, Koc E, Topal Y, Taylan Ozkan A, Celebi B (2012) A case of cutaneous leishmaniasis caused by Leishmania infantum in a non-endemic province (Ankara) of Turkey. Mikrobiyol Bul 46(3):499–506PubMedGoogle Scholar
  12. Dincsoy AB, Cansaran-Duman D (2017) Changes in apoptosis related gene expression profiles in cancer cell line exposed to usnic acid lichen secondary metabolite. Turk J Biol 41:484–493CrossRefGoogle Scholar
  13. Dujardin J, Campino L, Cañavate C, Dedet J, Gradoni L, Soteriadou K, Mazeris A, Ozbel Y, Boelaert M (2008) Spread of vector-borne diseases and neglect of Leishmaniasis, Europe. Emerg Infect Dis 14(7):1013–1018CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dutta A, Bandyopadhyay S, Mandal C, Chatterjee M (2007) Aloe vera leaf exudate induces a caspase independent cell death in Leishmania donovani promastigotes. J Med Microbiol 56:629–636CrossRefPubMedGoogle Scholar
  15. Ertabaklar H, Toz SO, Ozkan AT, Rastgeldi S, Balcioglu IC, Ozbel Y (2005) Serological and entomological survey in a zoonotic visceral leishmaniasis focus of North Central Anatolia, Turkey: Corum province. Acta Trop 93(3):239–246CrossRefPubMedGoogle Scholar
  16. Eskandari EG, Doudi M, Abedi S (2016) An in vitro study of anti-leishmanial effect of Portulaca oleracea extract. J Vector Borne Dis 53(4):362–369PubMedGoogle Scholar
  17. Foroutan-Rad M, Khademvatan S, Saki J, Hashemitabar M (2016) Holothuria leucospilota extract induces apoptosis in Leishmania major promastigotes. Iran J Parasitol 11(3):339–349PubMedPubMedCentralGoogle Scholar
  18. Fournet A, Munoz V (2002) Natural products as trypanocidal, anti-leishmanial and antimalarial drugs. Curr Top Med Chem 2(11):1215–1237CrossRefPubMedGoogle Scholar
  19. Georgiadou SP, Makaritsis KP, Dalekos GN (2015) Leishmaniasis revisited: current aspects on epidemiology, diagnosis and treatment. J Transl Int Med 3(2):43–50CrossRefPubMedPubMedCentralGoogle Scholar
  20. Haldar AK, Sen P, Roy S (2011) Use of antimony in the treatment of leishmaniasis: current status and future directions. Mol Biol Inter 571242Google Scholar
  21. Ingolfsdottir K (2002) Usnic acid. Phytochemistry 61(7):729–736CrossRefPubMedGoogle Scholar
  22. Kılıç N, Derici K, Buyuk I, Soydam-Aydin S, Aras S, Cansaran-Duman D (2018) Evaluation of in vitro anticancer activity of vulpinic acid and its apoptotic potential using gene expression and protein analysis. IJPER 52(3):46–54Google Scholar
  23. Lauterwein M, Oethinger M, Belsner K, Peters T, Marre R (1995) In vitro activities of the lichen secondary metabolites vulpinic acid, (+) usnic acid and (−) usnic acid against aerobic and anaerobic microorganisms. Antimicrob Agents Chemother 39:2541–2543CrossRefPubMedPubMedCentralGoogle Scholar
  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔCT) method. Methods 25(4):402–408CrossRefGoogle Scholar
  25. Luz JSB, Oliveira EB, Martins MCB, Silva NH, Alves LC, Santos FAB, Silva LLS, Silva EC, Medeiros PL (2015) Ultrastructural analysis of Leishmania infantum chagasi promastigotes forms treated in vitro with usnic acid. Sci World J 2015:617401Google Scholar
  26. Marinho FA, Goncalves KC, Oliveira SS, Goncalves DS, Matteoli FP, Seabra SH, Oliveira AC, Bellio M, Oliveira SS, Souto-Padrón T, d’Avila-Levy CM, Santos AL, Branquinha MH (2014) The Calpain inhibitor MDL28170 induces the expression of apoptotic markers in Leishmania amazonensis promastigotes. PLoS One 9(1):e87659CrossRefPubMedPubMedCentralGoogle Scholar
  27. Molnar K, Farkas E (2010) Current results on biological activities of lichen secondary metabolites: a review. Z Naturforsch C 65:157–173CrossRefPubMedGoogle Scholar
  28. Muller K (2001) Pharmaceutically relevant metabolites from lichens. Appl Microbiol Biotechnol 56(1–2):9–16PubMedGoogle Scholar
  29. Ok UZ, Balcioglu IC, Taylan Ozkan A, Ozensoy S, Ozbel Y (2002) Leishmaniasis in Turkey. Acta Trop 84(1):43–48CrossRefPubMedGoogle Scholar
  30. Ozkan AT, Yalcinkaya T, Kilic S, Babur C, Schallig HD (2008) Investigation of Leishmania infantum seropositivity in HIV/AIDS patients. Mikrobiyol Bul 42(1):113–117PubMedGoogle Scholar
  31. Oztoprak N, Aydemir H, Piskin N, Seremet Keskin A, Arasli M, Gokmen A, Celebi G, Kulekci Ugur A, Taylan Ozkan A (2010) An adult case of visceral leishmaniasis in a province of Black-Sea region, Turkey. Mikrobiyol Bul 44(4):671–677PubMedGoogle Scholar
  32. Saha P, Sen R, Hariharan C, Kumar D, Das P, Chatterjee M (2009) Berberine chloride causes a caspase-independent, apoptotic-like death in Leishmania donovani promastigotes. Free Radic Res 43(11):1101–1110CrossRefPubMedGoogle Scholar
  33. Sardar AH, Das S, Agnihorti S, Kumar M, Ghosh AK, Abhishek K, Kumar A, Purkait B, Ansari MY, Das P (2013) Spinigerin induces apoptotic like cell death in caspase independent manner in Leishmania donovani. Exp Parasitol 135(4):715–725CrossRefPubMedGoogle Scholar
  34. Schmeda-Hirschmann G, Tapia A, Lima B, Pertino M, Sortino M, Zacchino S, Arias AR, Feresin GE (2008) A new antifungal and antiprotozoal depside from the Andean lichen Protousnea poeppigii. Phytother Res 22(3):349–355CrossRefPubMedGoogle Scholar
  35. Tanir G, Taylan Ozkan A, Daglar E (2006) Pediatric visceral Leishmaniasis in Turkey. Pediatr Int 48(1):66–69CrossRefPubMedGoogle Scholar
  36. Tolomeo M, Roberti M, Scapozza L, Tarantelli C, Giacomini E, Titone L, Saporito L, Carlo P, Colomba C (2013) TTAS a new stilbene derivative that induces apoptosis in Leishmania infantum. Exp Parasitol 133:37–43CrossRefPubMedGoogle Scholar
  37. Varela MRE, Mollinedo-Gajatea C, Muro A, Mollinedoa F (2014) The HSP90 inhibitor 17-AAG potentiates the anti-leishmanial activity of the ether lipid edelfosine. Acta Trop 131:32–36CrossRefGoogle Scholar
  38. Zhao QL, Fujiwara Y, Kondo T (2010) Synergistic induction of apoptosis and caspase-independent autophagic cell death by a combination of nitroxide tempo and heat shock in human leukemia U937 cells. Apoptosis 15(10):1270–1283CrossRefPubMedGoogle Scholar
  39. Zu C, Zhang M, Xue H, Cai X, Zhao L, He A, Qin G, Yang C, Zheng X (2015) Emodin induces apoptosis of human breast cancer cells by modulating the expression of apoptosis-related genes. Oncol Lett 10(5):2919–2924CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mehmet Kürşat Derici
    • 1
  • Demet Cansaran-Duman
    • 2
  • Ayşegül Taylan-Özkan
    • 3
  1. 1.Faculty of Medicine, Department of Medical PharmacologyKırıkkale UniversityKırıkkaleTurkey
  2. 2.System Biotechnology Advance Research Unit, Biotechnology InstituteAnkara UniversityAnkaraTurkey
  3. 3.Faculty of Medicine, Department of Medical MicrobiologyHitit UniversityÇorumTurkey

Personalised recommendations