Advertisement

3 Biotech

, 8:366 | Cite as

Addition of ionophore A23187 increases the efficiency of Cocos nucifera somatic embryogenesis

  • Gustavo Rivera-Solís
  • Luis Sáenz-Carbonell
  • María Narváez
  • Guillermo Rodríguez
  • Carlos Oropeza
Original Article
  • 33 Downloads

Abstract

The present study reports the effect of treatment of coconut embryogenic structure explants (derived from embryogenic callus) with the calcium ionophore A23187 (0, 1, 5, 10 µM) to promote somatic embryogenesis under in vitro conditions. The results showed no significant increase in the percentage of explants forming embryogenic callus, but with 1 µM ionophore there were significant increases in the formation of embryogenic structures per callus (2.8-fold), of somatic embryos per callus (1.5-fold) and also a greater absolute number (1.5-fold) of developing plantlets per callus. The ionophore treatment also promoted a change of pattern of the expression of the CnSERK gene during embryogenic callus formation. It is proposed that if the use of ionophore A23187 treatment is coupled with an embryogenic callus multiplication process there could be a potentially greater increase in the efficiency of the formation of somatic embryos and plantlets of coconut.

Keywords

Coconut Somatic embryogenesis Calcium ionophore A23187 Cn SERK 

Notes

Acknowledgements

The authors thanks, IA José Luis Chan Rodríguez, for the technical support and advice; Fomix-Yucatán (Mexico, YUC-2011-C09-169886) and Centro de Investgación Científica de Yucatán A.C, for partial funding; and to Consejo Nacional de Ciencia y Tecnología for a scholarship (242979) for Gustavo Alberto Rivera-Solís.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest in publication of this paper.

Research involving human and animal participant

This article does not contain any studies with human subjects or animal performed by any of the authors.

References

  1. Altamura MM, Rovere FD, Fattorini L, D’Angeli S, Falasca G (2016) Recent advances on genetic and physiological bases on in vitro somatic embryo formation. In: Germanà MA, Lambardi M (eds) In vitro embryogenesis in higher plants. Humana Press, New York, p 558Google Scholar
  2. Anil VS, Rao KS (2000) Calcium-mediated signaling during sandalwood somatic embryogenesis. Role for exogenous calcium as second messenger. Plant Physiol 123:1301–1312.  https://doi.org/10.1104/pp.123.4.1301 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Azpeitia A, Chan JL, Sáenz L, Oropeza C (2003) Effect of 22(S)-homobrassinolide in somatic embryogenesis in plumule explants of Cocos nucifera (L.) cultured in vitro. J Hortic Sci Biotech 78:591–596.  https://doi.org/10.1080/14620316.2003.11511669 CrossRefGoogle Scholar
  4. Batugal P, Rao Ramanatha V, Oliver J (2005) Coconut genetic resources. International Plant Genetic Resources Institute - Regional office for Asia, the Pacific and Oceania. IPGRI-APO, SerdangGoogle Scholar
  5. Buffard-Morel J, Verdeil JL, Pannetier C (1992) Embryogenèse somatique du cocotier (Cocos nucifera L.) à partir d´explants foliaires: étude histologique. Can J Bot 70:735–741CrossRefGoogle Scholar
  6. Chan JL, Saénz L, Talavera C, Hornung R, Robert M, Oropeza C (1998) Regeneration of coconut (Cocos nucifera L.) from plumule explants through somatic embryogenesis. Plant Cell Rep 17:515–521.  https://doi.org/10.1007/s002990050434 CrossRefGoogle Scholar
  7. Dedkova EN, Sigova AA, Zinchenko VP (2000) Mechanism of action of calcium ionophores on intact cells: ionophore-resistant cells. Membr Cell Biol 13:357–368PubMedGoogle Scholar
  8. Du L, Poovaiah BW (2005) Ca2+/calmodulin is critical for brassinosteroid biosynthesis and plant growth. Nature 437:741–745.  https://doi.org/10.1038/nature03973 CrossRefPubMedGoogle Scholar
  9. FAO (2016) FAOSTAT. http://www.fao.org/faostat/. Accessed 15 Jan 2018
  10. Filippov M, Miroshnichenko D, Vernikovskaya D, Dolgov S (2006) The effect of auxins, time exposure to auxin and genotypes on somatic embryogenesis from mature embryos of wheat. Plant Cell Tiss Org 84:213–222.  https://doi.org/10.1007/s11240-005-9026-6 CrossRefGoogle Scholar
  11. Fisher DB (1968) Protein staining of ribboned epon sections for light microscopy. Histochemie 16:92–96CrossRefPubMedGoogle Scholar
  12. Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43:27–47CrossRefGoogle Scholar
  13. George EF, Hall MA, De Klerk G (eds) (2008) Plant propagation by tissue culture. The background, 3rd edn, vol. 1. Springer, DordrechtGoogle Scholar
  14. Gurr GM, Johnson AC, Ash GJ, Wilson BAL, Ero MM, Pilotti CA, Dewhurst CF, You MS (2016) Coconut lethal yellowing diseases: a phytoplasma threat to palms of global economic and social significance. Front Plant Sci 7:1–21.  https://doi.org/10.3389/fpls.2016.01521 CrossRefGoogle Scholar
  15. Hecht V, Vielle-calzada J-P, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U, de Vries SC (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816.  https://doi.org/10.1104/pp.010324.In CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hita O, Gallego P, Villalobos N, Lanas I, Blazquez A, Martin JP, Fernández J, Martin L, Guerra H (2003) Improvement of somatic embryogenesis in Medicago arborea. Plant Cell Tiss Org 72:13–18.  https://doi.org/10.1023/A:1021297902139 CrossRefGoogle Scholar
  17. Hornung R, Verdeil JL (1999) Somatic embryogenesis in coconut from immature inflorescence explants. In: Oropeza C, Verdeil JL, Ashburner GR et al (eds) Current advances in coconut biotechnology. Kluwer Academic Publishers, The Netherlands, pp 297–308CrossRefGoogle Scholar
  18. Jiao Y, Li Z, Xu K, Guo Y, Zhang C, Li T, Jiang Y, Liu G, Xu Y (2018) Study on improving plantlet development and embryo germination rates in in vitro embryo rescue of seedless grapevine. New Zeal J Crop Hort 46:39–53.  https://doi.org/10.1080/01140671.2017.1338301 CrossRefGoogle Scholar
  19. Kiselev KV, Gorpenchenko TY, Tchernoded GK, Dubrovina AS, Grischenko OV, Bulgakov VP, Zhuravlev YN (2008) Calcium-dependent mechanism of somatic embryogenesis in Panax ginseng cell cultures expressing the rolC oncogene. Mol Biol 42:243–252.  https://doi.org/10.1134/S0026893308020106 CrossRefGoogle Scholar
  20. Leljak-Levanic D, Bauer N, Mihaljevic S, Jelaska S (2004) Somatic embryogenesis in pumpkin (Cucurbita pepo L.): Control of somatic embryo development by nitrogen compounds. J Plant Physiol 161:229–236CrossRefPubMedGoogle Scholar
  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefGoogle Scholar
  22. Mahalakshmi A, Singla B, Kurana JP, Khurana P (2007) Role of calcium-calmodulin in auxin-induced somatic embryogenesis in leaf base cultures of wheat (Triticum aestivum var. HD 2329). Plant Cell Tiss Org 88:167–174.  https://doi.org/10.1007/s11240-006-9186-z CrossRefGoogle Scholar
  23. Montero-Cortés M, Rodriguez-Paredes F, Burgeff C, Pérez-Núñez T, Córdova I, Oropeza C, Verdeil JL, Sáenz L (2010a) Characterisation of a cyclin-dependent kinase (CDKA) gene expressed during somatic embryogenesis of coconut palm. Plant Cell Tiss Org 102:251–258.  https://doi.org/10.1007/s11240-010-9714-8 CrossRefGoogle Scholar
  24. Montero-Cortés M, Sáenz L, Córdova I, Quiroz A, Verdeil JL, Oropeza C (2010b) GA3 stimulates the formation and germination of somatic embryos and the expression of a KNOTTED-like homeobox gene of Cocos nucifera (L.). Plant Cell Rep 29:1049–1059.  https://doi.org/10.1007/s00299-010-0890-0 CrossRefPubMedGoogle Scholar
  25. Montero-Cortés M, Chan-Rodríguez JL, Cordova-Lara I, Oropeza-Salín C, Sáenz-Carbonell L (2011a) Addition of benzyladenine to coconut explants cultured in vitro improves the formation of somatic embryos and their germination. Agrociencia 45:663–673Google Scholar
  26. Montero-Cortés M, Cordova I, Verdeil JL, Hocher V, Pech y Aké A, Sandoval A, Oropeza C, Sáenz L (2011b) GA3 induces expression of E2F-like genes and CDKA during in vitro germination of zygotic embryos of Cocos nucifera (L.). Plant Cell Tiss Org 107:461–470.  https://doi.org/10.1007/s11240-011-9996-5 CrossRefGoogle Scholar
  27. Moon HK, Kim YW, Hong YP, Park SY (2013) Improvement of somatic embryogenesis and plantlet conversion in Oplopanax elatus, an endangered medicinal woody plant. SpringerPlus 2:1–8.  https://doi.org/10.1186/2193-1801-2-428 CrossRefGoogle Scholar
  28. Nguyen QT, Bandupriya HDD, López-Villalobos A, Sisunandar S, Foale M, Adkins SW (2015) Tissue culture and associated biotechnological interventions for the improvement of coconut (Cocos nucifera L.): a review. Planta 242:1059–1076.  https://doi.org/10.1007/s00425-015-2362-9 CrossRefPubMedGoogle Scholar
  29. Ntushelo K, Harrison NA (2013) Palm phytoplasmas in the Caribbean Basin. Palms 57:93–100Google Scholar
  30. Oropeza C, Rillo E, Hocher V, Verdeil J (2005) Coconut micropropagation. In: Batugal P, Pao V, Oliver J (eds) Coconut genetic resources. IPGRI-APO, Serdang, pp 334–346Google Scholar
  31. Oropeza C, Sáenz L, Chan JL, Sandoval G, Pérez-Núñez T, Narváez M, Rodríguez G, Borroto C (2016) Coconut micropropagation in Mexico using plumule and floral explants. Int J Coconut R D 32Google Scholar
  32. Pérez-Núñez MT, Chan JL, Sáenz L, González T, Verdeil JL, Oropeza C (2006) Improved somatic embryogenesis from Cocos nucifera (L.) plumule explants. In Vitro Cell Dev-Pl 42:37–43.  https://doi.org/10.1079/IVP2005722 CrossRefGoogle Scholar
  33. Pérez-Núñez MT, Souza R, Sáenz L, Chan JL, Zúñiga-Aguilar JJ, Oropeza C (2009) Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos. Plant Cell Rep 28:11–19.  https://doi.org/10.1007/s00299-008-0616-8 CrossRefPubMedGoogle Scholar
  34. Prades A, Salum UN, Pioch D (2016) New era for the coconut sector. What prospects for research? OCL 23:1–4.  https://doi.org/10.1051/ocl/2016048 CrossRefGoogle Scholar
  35. Prakash MG, Gurumurthi K (2010) Effects of type of explant and age, plant growth regulators and medium strength on somatic embryogenesis and plant regeneration in Eucalyptus camaldulensis. Plant Cell Tiss Org 100:13–20.  https://doi.org/10.1007/s11240-009-9611-1 CrossRefGoogle Scholar
  36. Quint M, Gray WM (2006) Auxin signaling. Curr Opin Plant Biol 9:448–453.  https://doi.org/10.1016/j.pbi.2006.07.006 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Rajesh MK, Fayas TP, Naganeeswaran S, Rachana KE, Bhavyashree U, Sajini KK, Karun A (2016) De novo assembly and characterization of global transcriptome of coconut palm (Cocos nucifera L.) embryogenic calli using Illumina paired-end sequencing. Protoplasma 253:913–928.  https://doi.org/10.1007/s00709-015-0856-8 CrossRefPubMedGoogle Scholar
  38. Ramakrishna A, Giridhar P, Ravishankar GA (2011) Calcium and calcium ionophore A23187 induce high-frequency somatic embryogenesis in cultured tissues of Coffea canephora P ex Fr. In Vitro Cell Dev-Pl 47:667–673.  https://doi.org/10.1007/s11627-011-9372-5 CrossRefGoogle Scholar
  39. Roolant L (2014) Why coconut water is now a one billion industry. https://transferwise.com/blog/2014-05/why-coconut-water-is-now-a-1-billion-industry/. Accessed 2 Nov 2015
  40. Sáenz L, Chan JL, Souza R, Hornung R, Rilo E, Verdeil JL, Oropeza C (1999) Somatic embryogenesis and regeneration in coconut from plumular explants. In: Oropeza C, Verdeil JL, Ashburner GR, Cardeña R, Santamaría JM (eds) Current advances in coconut biotechnology. Springer International Publishing, Netherlands, pp 309–319CrossRefGoogle Scholar
  41. Sáenz L, Azpeitia A, Chuc-Armendariz B, Chan JL, Verdeil JL, Hocher V, Oropeza C (2006) Morphological and histological changes during somatic embryo formation from coconut plumule explants. In Vitro Cell Dev-Pl 42:19–25.  https://doi.org/10.1079/IVP2005728 CrossRefGoogle Scholar
  42. Sáenz L, Herrera-Herrera G, Uicab-Ballote F, Chan JL, Oropeza C (2010) Influence of form of activated charcoal on embryogenic callus formation in coconut (Cocos nucifera). Plant Cell Tiss Org 100:301–308.  https://doi.org/10.1007/s11240-009-9651-6 CrossRefGoogle Scholar
  43. Sáenz L, Montero-Cortés M, Pérez-Núñez T, Azpeitia-Morales A, Andrade-Torres A, Córdova-Lara I, Chan-Rodríguez JL, Sandoval-Cancino G, Rivera-Solís G, Oropeza-Salín C (2016) Somatic embryogenesis in Cocos nucifera L. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Somatic embryogenesis: fundamental aspects and applications. Springer International Publishing, Switzerland, pp 297–318CrossRefGoogle Scholar
  44. Sandoval-Cancino G, Sáenz L, Chan JL, Oropeza C (2016) Improved formation of embryogenic callus from coconut immature inflorescence explants. In Vitro Cell Dev-Pl 52:367–378.  https://doi.org/10.1007/s11627-016-9780-7 CrossRefGoogle Scholar
  45. Schmidt EDL, Guzzo F, Toonen M, de Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062.  https://doi.org/10.1093/pcp/pci031 CrossRefPubMedGoogle Scholar
  46. Somleva MN, Schmidt EDL, de Vries SC (2000) Embryogenic cells in Dactylis glomerata L. (Poaceae) explants identified by cell tracking and by SERK expression. Plant Cell Rep 19:718–726.  https://doi.org/10.1007/s002999900169 CrossRefGoogle Scholar
  47. Takeda T, Inose H, Matsuoka H (2003) Stimulation of somatic embryogenesis in carrot by additional calcium. Biochem Eng J 14:143–148CrossRefGoogle Scholar
  48. Vanneste S, Friml J (2013) Calcium: the missing link in auxin action. Plants 2:650–675.  https://doi.org/10.3390/plants2040650 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Verma SK, Das AK, Gantait S, Gurel S, Gurel E (2018) Influence of auxin and its polar transport inhibitor on the development of somatic embryos in Digitalis trojana. 3 Biotech 8:1–8.  https://doi.org/10.1007/s13205-018-1119-0 CrossRefGoogle Scholar
  50. Vidican TI, Cachita-Cosma D (2010) Studies regarding the influence of different wavelengths of LEDs light on regenerative and morphogenetic processes in in vitro cultures of Echinopsis chamaecereus f. lutea. Stud Univ Vasile Goldis Arad, Ser Stiint Vietii 20:41–45Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Gustavo Rivera-Solís
    • 1
  • Luis Sáenz-Carbonell
    • 1
  • María Narváez
    • 1
  • Guillermo Rodríguez
    • 1
  • Carlos Oropeza
    • 1
  1. 1.Centro de Investigación Científica de Yucatán (CICY), A.C., Unidad de BiotecnologíaMéridaMexico

Personalised recommendations