3 Biotech

, 8:350 | Cite as

Genetic homogeneity in South American tomato pinworm, Tuta absoluta: a new invasive pest to oriental region

  • P. R. ShashankEmail author
  • S. Twinkle
  • K. Chandrashekar
  • Naresh M. Meshram
  • Sachin S. Suroshe
  • A. S. R. Bajracharya
Short Reports


South American tomato leaf miner, Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae), is an important invasive pest of Tomato which invaded India and Nepal in 2014 and 2016, respectively. In the present study, samples from five localities of India and one from Nepal were used for the investigation of genetic diversity of T. absoluta by employing a fragment in the mtDNA gene-encoding cytochrome oxidase I (COI). Based on the partial COI gene, high genetic homogeneity was detected in T. absoluta populations of India and Nepal with rest of the world. Less nucleotide diversity (π 0.00137) was also detected in the populations of T. absoluta from different countries. This is first attempt to analyze molecular data for this new invasive species from India and Nepal.


Cytochrome oxidase Invasive pest India Nepal Tomato Tuta absoluta 



We are grateful to Head, Division of Entomology, Indian Agricultural Research Institute, Pusa Campus, New Delhi for her guidance. We thank DST-SERB (SB/YS/LS-126/2014) for the financial assistance to conduct this work.

Author contributions

SPR collected and identified specimens. TS performed molecular work. Conceptualization: SPR and NMM. Data curation: SPR, TS, and SSS. Data analysis: SPR and ASRB. Supervision: SPR and KC. Funding acquisition: SPR. All authors read, reviewed and approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Supplementary material

13205_2018_1374_MOESM1_ESM.txt (30 kb)
Supplementary material 1 (TXT 30 kb)


  1. Armstrong KF, Ball SL (2005) DNA barcodes for biosecurity: invasive species identification. Philos Trans R Soc Lond B Biol Sci 360:1813–1823CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bajracharya ASR, Mainali RP, Bhat B, Bista S, Shashank PR, Meshram NM (2016) The first record of South American tomato leaf miner, Tuta absoluta (Meyrick 1917) (Lepidoptera: Gelechiidae) in Nepal. J Entomol Zool Stud 4:1359–1363Google Scholar
  3. Ballal CR, Gupta A, Mohan M, Lalitha Y, Verghese A (2016) The new invasive pest Tuta absoluta (Meyrick)(Lepidoptera: Gelechiidae) in India and its natural enemies along with evaluation of Trichogrammatids for its biological control. Current Sci 110:2155CrossRefGoogle Scholar
  4. Baniameri V, Cheraghian A (2012) The first report and control strategies of Tuta absoluta in Iran. EPPO Bull 42:322 – 324CrossRefGoogle Scholar
  5. Campos MR, Biondi A, Adiga A, Guedes RN, Desneux N (2017) From the Western Palaearctic region to beyond: Tuta absoluta 10 years after invading Europe. J Pest Sci 1:1–10Google Scholar
  6. Chakraborty AB, Nei M (1977) Bottleneck effect on average heterozygosity and genetic distance with the stepwise mutation model. Evolution 31:347–356CrossRefPubMedGoogle Scholar
  7. Cifuentes D, Chynoweth R, Bielza P (2011) Genetic study of Mediterranean and South American populations of tomato leafminer Tuta absoluta (Povolny, 1994) (Lepidoptera: Gelechiidae) using ribosomal and mitochondrial markers. Pest Manag Sci 67:1155–1162PubMedGoogle Scholar
  8. Desneux N, Wajnberg E, Wyckhuys KAG, Burgio G, Arpaia S, Narva´ez-Vasquez CA, Gonza´lez-Cabrera J, Catala´n Ruescas D, Tabone E, Frandon J, Pizzol J, Poncet C, Cabello T, Urbaneja A (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, history of invasion and prospects for biological control. J Pest Sci 83:197–215CrossRefGoogle Scholar
  9. Desneux N, Luna MG, Guillemaud T, Urbaneja A (2011) The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J Pest Sci 84:403–408CrossRefGoogle Scholar
  10. EPPO (2005) Data sheets on quarantine pests: Tuta absoluta. OEPP/EPPO Bull 35:434–435CrossRefGoogle Scholar
  11. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567CrossRefGoogle Scholar
  12. Figueroa CC, Simon JC, Le Gallic JF, Prunier-Leterme N, Briones LM, Dedryver CA, Niemeyer HM (2005) Genetic structure and clonal diversity of an introduced pest in Chile, the cereal aphid Sitobion avenae. Heredity 95:24–33CrossRefPubMedGoogle Scholar
  13. Flores LV, Gilardon E, Gardenal CN (2003) Genetic structure of populations of Tuta absoluta Meyrick (Lepidoptera: Gelechiidae). J Basic Appl Genet 15:29–32Google Scholar
  14. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit 1 from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  15. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedPubMedCentralGoogle Scholar
  16. Fu Y, Li W (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709PubMedPubMedCentralGoogle Scholar
  17. Gissi C, Iannelli F, Pesole G (2008) Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101:301–320CrossRefPubMedGoogle Scholar
  18. Hafiz MT, Samreen A (2016) Services of DNA barcoding in different fields. Mitochondr DNA Part A 27:4463–4474CrossRefGoogle Scholar
  19. Hawley DM, Hanley D, Dhondt AA, Lovette IJ (2006) Molecular evidence for a founder effect in invasive house finch (Carpodacus mexicanus) populations experiencing an emergent disease epidemic. Mol Ecol 15:263–275CrossRefPubMedGoogle Scholar
  20. Hayden JE, Lee S, Passoa SC, Young J, Landry JF, Nazari V, Mally R, Somma LA, Ahlmark KM (2013) Digital identification of microlepidoptera on solanaceae. USDA-APHIS-PPQ identification technology program (ITP). Fort Collins, CO. Accessed 09 Feb 2017
  21. Hoos PM, Whitman Miller A, Ruiz GM, Vrijenhoek RC, Geller JB (2010) Genetic and historical evidence disagree on likely sources of the Atlantic amethyst gem clam Gemma gemma (Totten, 1834) in California. Diver Dist 16:582–592CrossRefGoogle Scholar
  22. Hufbauer RA, Roderick GK (2005) Microevolution in biological control: mechanisms, patterns, and processes. Biol Control 35:227–239CrossRefGoogle Scholar
  23. ICAR (2015) Tuta absoluta: A new invasive pest alert. Indian Council of Agricultural Research New Delhi, India, 2015. Accessed 23 Jun 2016
  24. IHD (2017) Indian Horticulture Database. National Horticulture Board, Ministry of Agriculture, New Delhi. Accessed 18 Nov 17
  25. Ito K, Nishikawa H, Shimada T, Ogawa K, Minamiya Y, Tomoda M, Nakahira K, Kodama R, Fukuda T, Arakawa R (2011) Analysis of genetic variation and phylogeny of the predatory bug, Pilophorus typicus, in Japan using mitochondrial gene sequences. J Insect Sci 11:18CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with ClustalX [J]. Trends Biochem Sci 23:403–405CrossRefPubMedGoogle Scholar
  27. Kalleshwaraswamy CM, Murthy MS, Viraktamath CA, Kumar NK (2015) Occurrence of Tuta absoluta (Lepidoptera: Gelechiidae) in the Malnad and Hyderabad–Karnataka Regions of Karnataka, India. Fla Entomol 98(3):970–971CrossRefGoogle Scholar
  28. Kruse JJ, Sperling FA (2001) Molecular phylogeny within and between species of the Archips argyrospila complex (Lepidoptera: Tortricidae). Ann Entomol Soc Am 94:166–173CrossRefGoogle Scholar
  29. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedGoogle Scholar
  30. Kumari DA, Anitha G, Anitha V, Lakshmi BK, Vennila S, Rao NH (2015) New record of leaf miner, Tuta absoluta (Meyrich) in Tomato. Insect Environ 20:136–138Google Scholar
  31. Larrain PS (1986) Plagas del tomate. IPA La Platina 39:30–35Google Scholar
  32. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391CrossRefGoogle Scholar
  33. Librado P, Rozas J (2009) DnaSP V5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  34. Lindholm AK, Breden F, Alexander HJ, Chan WK, Thakurta SG, Brooks R (2005) Invasion success and genetic diversity of introduced populations of guppies Poecilia reticulata in Australia. Mol Ecol 14:3671–3682CrossRefPubMedGoogle Scholar
  35. Margam VM, Coates BS, Ba MN, Sun W, Binso-Dabire CL, Baoua I, Ishiyaku MF, Shukle JT, Hellmich RL, Covas FG, Ramasamy S, Armstrong J, Pittendrigh BR, Murdock LL (2011) Geographic distribution of phylogenetically-distinct legume pod borer, Maruca vitrata (Lepidoptera: Pyraloidea: Crambidae). Mol Biol Rep 38:893–903CrossRefPubMedGoogle Scholar
  36. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10CrossRefPubMedGoogle Scholar
  37. Pereyra PC, Sánchez NE (2006) Effect of two solanaceous plants on developmental and population parameters of the tomato leaf miner, Tuta absoluta (Meyrick)(Lepidoptera: Gelechiidae). Neotrop Entomol 35:671–676CrossRefPubMedGoogle Scholar
  38. Porretta D, Canestrelli D, Bellini R, Celli G, Urbanelli S (2007) Improving insect pest management through population genetic data: a case study of the mosquito Ochlerotatus caspius (Pallas). J Appl Ecol 44:682–691CrossRefGoogle Scholar
  39. Reil JB, San Jose M, Rubinoff D (2016) Low variation in nuclear and mitochondrial DNA inhibits resolution of invasion pathways across the Pacific for the Coconut Rhinoceros Beetle (Scarabeidae: Oryctes rhinoceros). Proc Hawaiian Entomol Soc 48:57–69Google Scholar
  40. Roderick GK (2004) Tracing the origin of pests and natural enemies: genetic and statistical approaches. In: Lester EE, Sforza R, Mateille T (eds) Genetics, evolution and biological control. CABI, Cambridge, pp 97–112CrossRefGoogle Scholar
  41. Rubinoff D, Holland BS, San Jose M, Powell JA (2011) Geographic proximity not a prerequisite for invasion: Hawaii not the source of California invasion by light brown apple moth (Epiphyas postvittana). PLoS One 6(1):e16361.1CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sankarganesh E, Firake DM, Sharma B, Verma VK, Behere GT (2017) Invasion of the south American Tomato Pinworm, Tuta absoluta, in northeastern India: a new challenge and biosecurity concerns. Entomol Gen 36:335–345CrossRefGoogle Scholar
  43. Sarma NP, Singh S, Sarma DK, Bhattacharyya DR, Kalita MC, Mohapatra PK, Dohutia C, Mahanta J, Prakash A (2016) Mitochondrial DNA-based genetic diversity of Anopheles nivipes in North East India. Mitochondr DNA Part A 27:4236–4239CrossRefGoogle Scholar
  44. Shanmugam PS, Ramaraju K, Indhumathi K (2016) First record of South American tomato moth, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in Tamil Nadu, India. Entomon 41:61–66Google Scholar
  45. Shashank PR, Chakravarthy AK, Raju BR, Bhanu KR (2014) DNA barcoding reveals the occurrence of cryptic species in host-associated population of Conogethes punctiferalis (Lepidoptera: Crambidae). Appl Entomol Zool 49:283–295CrossRefGoogle Scholar
  46. Shashank PR, Chandrashekar K, Meshram NM, Sreedevi K (2015) Occurrence of Tuta absoluta (Lepidoptera: Gelechiidae) an invasive pest from India. Indian J Entomol 77:323–329CrossRefGoogle Scholar
  47. Shashank PR, Suroshe SS, Singh PK, Chandrashekar K, Nebapure SM, Meshram NM (2016) Report of invasive tomato leaf miner, Tuta absoluta (Lepidoptera: Gelechiidae) from northern India. Indian J Agric Sci 86:1635–1636Google Scholar
  48. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedPubMedCentralGoogle Scholar
  49. Trewick SA (2000) Molecular evidence for dispersal rather than vicariance as the origin of flightless insect species on the Chatham Islands, New Zealand. J Biogeogr 27:1189–1200CrossRefGoogle Scholar
  50. Tsutsui ND, Case TJ (2001) Population genetics and colony structure of the Argentine ant (Linepithema humile) in its native and introduced ranges. Evolution 55:976–985CrossRefPubMedGoogle Scholar
  51. Tsutsui ND, Suarez AV, Holway DA, Case TJ (2000) Reduced genetic variation and the success of an invasive species. Proc Natl Acad Sci 97:5948–5953CrossRefPubMedGoogle Scholar
  52. Valade R, Kenis M, Hernandez-lopez A, Augustin S, Mari Mena N, Magnoux E, Rougerie R, Lakatos F, Roques A, Lopez-Vaamonde C (2009) Mitochondrial and microsatellite DNA markers reveal a Balkan origin for the highly invasive horse-chestnut leaf miner Cameraria ohridella (Lepidoptera, Gracillariidae). Mol Ecol 18:3458–3470CrossRefPubMedGoogle Scholar
  53. Vargas H (1970) Observaciones sobre la biologia y enemigos naturales de la polilla del tomate, Gnorimoschema absoluta (Meyrick) (Lepidoptera: Gelechiidae). Idesia 1:75–110Google Scholar
  54. Vogler AP, Desalle R, Assmann T, Knisley CB, Schultz TD (1993) Molecular population genetics of the endangered tiger beetle Cicindela dorsalis (Coleoptera: Cicindelidae). Ann Entomol Soc Am 86:142–152CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • P. R. Shashank
    • 1
    Email author
  • S. Twinkle
    • 1
  • K. Chandrashekar
    • 2
  • Naresh M. Meshram
    • 1
  • Sachin S. Suroshe
    • 1
  • A. S. R. Bajracharya
    • 3
  1. 1.Division of EntomologyIndian Agricultural Research InstituteNew DelhiIndia
  2. 2.Indian Agricultural Research InstitutePuneIndia
  3. 3.Entomology Division, National Agriculture Research InstituteNepal Agricultural Research Council (NARC)LalitpurNepal

Personalised recommendations