Advertisement

3 Biotech

, 8:286 | Cite as

Inhibitory effects of Lepidium sativum polysaccharide extracts on TNF-α production in Escherichia coli-stimulated mouse

  • Ajaz Ahmad
  • Basit Latief Jan
  • Mohammad Raish
  • Khalid M. Alkharfy
  • Abdul Ahad
  • Altaf Khan
  • Majid Ahmad Ganaie
  • Mohammed Abbas Ali Hamidaddin
Original Article
  • 33 Downloads

Abstract

The present study was designed to study the quantitative effects of extraction time, temperature and solvent to sample ratio on the yield of Lepidium sativum polysaccharides (LSP) using a Box–Behnken design. The activities of the optimized LSP extract were then tested in an in vivo experimental system of Escherichia coli (E. coli)-induced endotoxin shock. The optimal polysaccharide extraction conditions were established by the equation of regression and evaluation of the response surface contour plots: extraction time 5.2 h; temperature 95 °C and ratio of water to raw material 31.89 mL/g. Subsequently, an in vivo endotoxin shock was induced in mice with a single E. coli i.p. injection. Septic mice showed a substantial raise in the levels of tumor necrosis factor alpha (TNF-α) in plasma, whereas mice treated with LSP after E. coli injection showed considerable lower plasma levels of TNF-α (P < 0.05). These results suggest that LSP have beneficial effects when administered to mice with endotoxin shock by diminishing the pro-inflammatory response. The systemic activity of LSP indicated that the extract has a significant inhibitory effect against E. coli-induced inflammation by reducing the circulating levels of TNF-α. Further studies are warranted to explore the clinical implications of such observations.

Keywords

Lepidium sativum Polysaccharides Box–Behnken design TNF-α inhibitory property 

Notes

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through Research Group Number (RG-1438-069).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3(9):745–756.  https://doi.org/10.1038/nri1184 CrossRefGoogle Scholar
  2. Ahmad A, Alkharfy KM, Wani TA, Raish M (2015) Application of Box–Behnken design for ultrasonic-assisted extraction of polysaccharides from Paeonia emodi. Int J Biol Macromol 72:990–997.  https://doi.org/10.1016/j.ijbiomac.2014.10.011 CrossRefGoogle Scholar
  3. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5):965–977.  https://doi.org/10.1016/j.talanta.2008.05.019 CrossRefGoogle Scholar
  4. Bone RC (1991) The pathogenesis of sepsis. Ann Intern Med 115(6):457–469CrossRefGoogle Scholar
  5. Chen L, Li B, Li D, Gan J, Jiang W, Kitamura Y (2008) Ultrasound-assisted hydrolysis and acidogenesis of solid organic wastes in a rotational drum fermentation system. Bioresour Technol 99(17):8337–8343.  https://doi.org/10.1016/j.biortech.2008.02.043 CrossRefGoogle Scholar
  6. Doke S, Guha M (2014) Garden cress (Lepidium sativum L.) seed—an important medicinal source: a review. J Nat Prod Plant Resour 4(1):69–80Google Scholar
  7. Entezari MH, Hagh Nazary S, Haddad Khodaparast MH (2004) The direct effect of ultrasound on the extraction of date syrup and its micro-organisms. Ultrason Sonochem 11(6):379–384.  https://doi.org/10.1016/j.ultsonch.2003.10.005 Google Scholar
  8. Gerard C, Rollins BJ (2001) Chemokines and disease. Nat Immunol 2(2):108–115.  https://doi.org/10.1038/84209 CrossRefGoogle Scholar
  9. Govender S, Pillay V, Chetty D, Essack S, Dangor CM, Govender T (2005) Optimization and characterization of bioadhesive controlled release tetracycline micro spheres. ‎Int J Pharm 306:24–40CrossRefGoogle Scholar
  10. Guha M, Mackman N (2001) LPS induction of gene expression in human monocytes. Cell Signal 13(2):85–94CrossRefGoogle Scholar
  11. Hou XJ, Wei C (2008) Optimization of extraction process of crude polysaccharides from wild edible BaChu mushroom by response surface methodology. Carbohydr Polym 72(1):67–74.  https://doi.org/10.1016/j.carbpol.2007.07.034 CrossRefGoogle Scholar
  12. Juma A (2007) The effects of Lepidium sativum seeds on fracture-induced healing in rabbits. MedGenMed Medscape Gen Med 9(2):23Google Scholar
  13. Karacabey E, Mazza G (2010) Optimisation of antioxidant activity of grape cane extracts using response surface methodology. Food Chem 119(1):343–348.  https://doi.org/10.1016/j.foodchem.2009.06.029 CrossRefGoogle Scholar
  14. Karazhiyan H, Razavi SMA, Phillips GO, Fang YP, Al-Assaf S, Nishinari K (2011) Physicochemical aspects of hydrocolloid extract from the seeds of Lepidium sativum. Int J Food Sci Technol 46(5):1066–1072.  https://doi.org/10.1111/j.1365-2621.2011.02583.x CrossRefGoogle Scholar
  15. Kirtikar KR (2005) Indian medicinal plant, vol 1. International Book Distributors, DehradunGoogle Scholar
  16. Koda S, Kimura T, Kondo T, Mitome H (2003) A standard method to calibrate sonochemical efficiency of an individual reaction system. Ultrason Sonochem 10(3):149–156.  https://doi.org/10.1016/S1350-4177(03)00084-1 CrossRefGoogle Scholar
  17. Li HZ, Pordesimo L, Weiss J (2004) High intensity ultrasound-assisted extraction of oil from soybeans. Food Res Int 37(7):731–738.  https://doi.org/10.1016/j.foodres.2004.02.016 CrossRefGoogle Scholar
  18. Liu J, Li JW, Tang JA (2010) Ultrasonically assisted extraction of total carbohydrates from Stevia rebaudiana Bertoni and identification of extracts. Food Bioprod Process 88(C2-3):215–221.  https://doi.org/10.1016/j.fbp.2009.12.005 CrossRefGoogle Scholar
  19. Liyana-Pathirana C, Shahidi F (2005) Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem 93(1):47–56.  https://doi.org/10.1016/j.foodchem.2004.08.050 CrossRefGoogle Scholar
  20. Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104(4):487–501CrossRefGoogle Scholar
  21. Ma CH, Liu TT, Yang L, Zu YG, Wang SY, Zhang RR (2011) Study on ionic liquid-based ultrasonic-assisted extraction of biphenyl cyclooctene lignans from the fruit of Schisandra chinensis Baill. Anal Chim Acta 689(1):110–116.  https://doi.org/10.1016/j.aca.2011.01.012 CrossRefGoogle Scholar
  22. Manohar DVG, Nagesh S, Jain V, Shivaprasad HN (2012) Ethnopharmacology of Lepidium sativum Linn (Brassicaceae): a review. Int J Phytother Res 2(1):1–7Google Scholar
  23. Morelli LL, Prado MA (2012) Extraction optimization for antioxidant phenolic compounds in red grape jam using ultrasound with a response surface methodology. Ultrason Sonochem 19(6):1144–1149.  https://doi.org/10.1016/j.ultsonch.2012.03.009 CrossRefGoogle Scholar
  24. Murakami T, Cardones AR, Hwang ST (2004) Chemokine receptors and melanoma metastasis. J Dermatol Sci 36(2):71–78.  https://doi.org/10.1016/j.jdermsci.2004.03.002 CrossRefGoogle Scholar
  25. Nadkarni KM. (2005) Indian plant and drug with their medicinal properties and uses. Srishti Book Distributors, Delhi, pp 216–217Google Scholar
  26. Prakash Maran J, Manikandan S, Thirugnanasambandham K, Vigna Nivetha C, Dinesh R (2013) Box–Behnken design based statistical modeling for ultrasound-assisted extraction of corn silk polysaccharide. Carbohydr Polym 92(1):604–611.  https://doi.org/10.1016/j.carbpol.2012.09.020 CrossRefGoogle Scholar
  27. Raval N (2016) A comprehensive review of Lepidium sativum Linn, a traditional medicinal plant. World J Pharm Pharmaceutical Sci 5(5):593–1601Google Scholar
  28. Ravikumar K, Ramalingam S, Krishnan S, Balu K (2006) Application of response surface methodology to optimize the process variables for Reactive Red and Acid Brown dye removal using a novel adsorbent. Dyes Pigments 70(1):18–26.  https://doi.org/10.1016/j.dyepig.2005.02.004 CrossRefGoogle Scholar
  29. Rehman NU, Khan AU, Alkharfy KM, Gilani AH (2012) Pharmacological basis for the medicinal use of Lepidium sativum in airways disorders. Evid Based Complement Altern Med eCAM 2012:596524.  https://doi.org/10.1155/2012/596524 CrossRefGoogle Scholar
  30. Remick DG, Kunkel RG, Larrick JW, Kunkel SL (1987) Acute in vivo effects of human recombinant tumor necrosis factor. Lab Investig J Tech Methods Pathol 56(6):583–590Google Scholar
  31. RenJie L (2008) Orthogonal test design for optimization of the extraction of polysaccharides from Phascolosoma esulenta and evaluation of its immunity activity. Carbohydr Polym 73(4):558–563.  https://doi.org/10.1016/j.carbpol.2007.12.026 CrossRefGoogle Scholar
  32. Samavati V, Manoochehrizade A (2013) Polysaccharide extraction from Malva sylvestris and its anti-oxidant activity. Int J Biol Macromol 60:427–436.  https://doi.org/10.1016/j.ijbiomac.2013.04.050 CrossRefGoogle Scholar
  33. Save SS, Pandit AB, Joshi JB (1997) Use of hydrodynamic cavitation for large scale microbial cell disruption. Food Bioprod Process 75(C1):41–49.  https://doi.org/10.1205/096030897531351 CrossRefGoogle Scholar
  34. Saxena PK, Gupta DK, Sharma RD, Gupta Ritu SKK (2015) Prospects of phytocological activity of Lepidium sativum: a review. Int J Pharm Bio Sci 5(2):145–151Google Scholar
  35. Sharma S, Agarwal N (2011) Nourishing and healing powers of garden cress (Lepidium sativum Linn); a review. Ind J Nat Prod Resour 2(3):292–297Google Scholar
  36. Varki A, Cummings RD, Esko JD, Freeze H, Stanley P, Bertozzi CR, Hart GW, Etzler ME (2009) Essentials of glycobiology. 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY)Google Scholar
  37. Vinatoru M, Toma M, Radu O, Filip PI, Lazurca D, Mason TJ (1997) The use of ultrasound for the extraction of bioactive principles from plant materials. Ultrason Sonochem 4(2):135–139CrossRefGoogle Scholar
  38. Wang YJ, Cheng Z, Mao JW, Fan MG, Wu XQ (2009) Optimization of ultrasonic-assisted extraction process of Poria cocos polysaccharides by response surface methodology. Carbohydr Polym 77(4):713–717.  https://doi.org/10.1016/j.carbpol.2009.02.011 CrossRefGoogle Scholar
  39. Yang B, Jiang YM, Zhao MM, Shi J, Wang LZ (2008) Effects of ultrasonic extraction on the physical and chemical properties of polysaccharides from longan fruit pericarp. Polym Degrad Stab 93(1):268–272.  https://doi.org/10.1016/j.polymdegradstab.2007.09.007 CrossRefGoogle Scholar
  40. Ying Z, Han XX, Li JR (2011) Ultrasound-assisted extraction of polysaccharides from mulberry leaves. Food Chem 127(3):1273–1279.  https://doi.org/10.1016/j.foodchem.2011.01.083 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ajaz Ahmad
    • 1
  • Basit Latief Jan
    • 1
  • Mohammad Raish
    • 2
  • Khalid M. Alkharfy
    • 1
  • Abdul Ahad
    • 2
  • Altaf Khan
    • 3
  • Majid Ahmad Ganaie
    • 4
  • Mohammed Abbas Ali Hamidaddin
    • 5
  1. 1.Department of Clinical Pharmacy, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Pharmaceutics, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Department of Pharmacology, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Department of Pharmacology, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl KharjSaudi Arabia
  5. 5.Department of Pharmaceutical Chemistry, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations