Advertisement

3 Biotech

, 8:262 | Cite as

Computational-based structural, functional and phylogenetic analysis of Enterobacter phytases

  • Krishnendu Pramanik
  • Shreyasi Kundu
  • Sandipan Banerjee
  • Pallab Kumar Ghosh
  • Tushar Kanti Maiti
Original Article
  • 44 Downloads

Abstract

Myo-inositol hexakisphosphate phosphohydrolases (i.e., phytases) are known to be a very important enzyme responsible for solubilization of insoluble phosphates. In the present study, Enterobacter phytases have characterized by different phylogenetic, structural and functional parameters using some standard bio-computational tools. Results showed that majority of the Enterobacter phytases are acidic in nature as most of the isoelectric points were under 7.0. The aliphatic indices predicted for the selected proteins were below 40 indicating their thermostable nature. The average molecular weight of the proteins was 48 kDa. The lower values of GRAVY of the said proteins implied that they have better interactions with water. Secondary structure prediction revealed that alpha-helical content was highest among the other forms such as sheets, coils, etc. Moreover, the predicted 3D structure of Enterobacter phytases divulged that the proteins consisted of four monomeric polypeptide chains i.e., it was a tetrameric protein. The predicted tertiary model of E. aerogenes (A0A0M3HCJ2) was deposited in Protein Model Database (Acc. No.: PM0080561) for further utilization after a thorough quality check from QMEAN and SAVES server. Functional analysis supported their classification as histidine acid phosphatases. Besides, multiple sequence alignment revealed that “DG–DP–LG” was the most highly conserved residues within the Enterobacter phytases. Thus, the present study will be useful in selecting suitable phytase-producing microbe exclusively for using in the animal food industry as a food additive.

Keywords

Enterobacter spp. Myo-inositol hexakisphosphate phosphohydrolases In silico analysis Histidine phosphatase superfamily Acidic phytases Thermostable 

Abbreviations

UniProtKB

The Universal Protein Knowledgebase

MEGA

Molecular evolutionary genetics analysis

MW

Molecular weight

pI

Isoelectric point

EC

Extinction coefficient

AI

Aliphatic index

II

Instability index

GRAVY

Grand average of hydropathicities

QMEAN

Qualitative Model Energy ANalysis

SAVES

The structure analysis and verification server

Notes

Acknowledgements

The first author is thankful to Department of Science and Technology (DST), New Delhi, Government of India for awarding the INSPIRE fellowship (Reg. no.: IF150197).

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.

Supplementary material

13205_2018_1287_MOESM1_ESM.docx (2.7 mb)
Supplementary material 1 (DOCX 2752 KB)

References

  1. Afinah S, Yazid AM, Anis Shobirin MH et al (2010) Phytase: application in food industry. Int Food Res J 17:13–21Google Scholar
  2. Apweiler R, Bairoch A, Wu CH et al (2004) UniProt: the Universal Protein knowledgebase. Nucleic Acids Res 32:D115–D119.  https://doi.org/10.1093/nar/gkh131 CrossRefGoogle Scholar
  3. Benkert P, Künzli M, Schwede T (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res 37:510–514.  https://doi.org/10.1093/nar/gkp322 CrossRefGoogle Scholar
  4. Berlyne GM, Ben-Ari J, Nord E et al (1973) Bedouin osteomalacia caused by high phytic unleavened bread. Am J Clin Nutr 26:910–911CrossRefGoogle Scholar
  5. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucl Acids Res 28:235–242.  https://doi.org/10.1093/nar/28.1.235 CrossRefGoogle Scholar
  6. Biasini M, Bienert S, Waterhouse A et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:252–258.  https://doi.org/10.1093/nar/gku340 CrossRefGoogle Scholar
  7. Casey A, Walsh G (2004) Identification and characterization of a phytase of potential commercial interest. J Biotechnol 110(3):313–322.  https://doi.org/10.1016/j.jbiotec.2004.03.001 CrossRefGoogle Scholar
  8. Cheng C, Wong K-B, Lim BL (2007) The effect of disulfide bond on the conformational stability and catalytic activity of beta-propeller phytase. Protein Pept Lett 14:175–183.  https://doi.org/10.2174/092986607779816069 CrossRefGoogle Scholar
  9. Dahiya S (2016) Industrial application of phytases. Int J Appl Res 2:95–98Google Scholar
  10. Ebrahimi S, Jamei R, Ghasemian A et al (2016) In Silico comparison of disulfide-bearing and disulfide-free phytases among microorganisms. J Pharm Nutr Sci 7:24–34Google Scholar
  11. Elkhalil EAI, Männer K, Borriss R et al (2007) In vitro and in vivo characteristics of bacterial phytases and their efficacy in broiler chickens. Br Poult Sci 48:64–70.  https://doi.org/10.1080/00071660601148195 CrossRefGoogle Scholar
  12. El-Toukhy NMK, Youssef AS, Mikhail MGM (2013) Isolation, purification and characterization of phytase from Bacillus subtilis MJA. African J Biotechnol 12:2957–2967.  https://doi.org/10.5897/AJB2013.12304 Google Scholar
  13. Escobin-Mopera L, Ohtani M, Sekiguchi S et al (2012) Purification and characterization of phytase from Klebsiella pneumoniae 9-3B. J Biosci Bioeng 113:562–567.  https://doi.org/10.1016/j.jbiosc.2011.12.010 CrossRefGoogle Scholar
  14. Gao P, Wang Q-P, Chen L et al (2012) Prediction of human genes’ regulatory functions based on protein–protein interaction network. Protein Pept Lett 19:910–916CrossRefGoogle Scholar
  15. Gasteiger E, Hoogland C, Gattiker A et al. (2005) Protein identification and analysis tools on the ExPASy Server. Proteom Protoc Handb 571–607.  https://doi.org/10.1385/1592598900
  16. George TS, Simpson RJ, Gregory PJ et al (2007) Differential interaction of Aspergillus niger and Peniophora lycii phytases with soil particles affects the hydrolysis of inositol phosphates. Soil Biol Biochem 39:793–803CrossRefGoogle Scholar
  17. Geourjon C, Deléage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684.  https://doi.org/10.1093/bioinformatics/11.6.681 Google Scholar
  18. Goñi J, Esteban FJ, de Mendizábal NV et al (2008) A computational analysis of protein–protein interaction networks in neurodegenerative diseases. BMC Syst Biol 2:52.  https://doi.org/10.1186/1752-0509-2-52 CrossRefGoogle Scholar
  19. Gontia-Mishra I, Tiwari S (2013) Molecular characterization and comparative phylogenetic analysis of phytases from fungi with their prospective applications. Food Technol Biotechnol 51:313–326Google Scholar
  20. Gontia-Mishra I, Singh VK, Tripathi N et al (2014) Computational identification, homology modelling and docking analysis of phytase protein from Fusarium oxysporum. Biologia 69:1283–1294CrossRefGoogle Scholar
  21. Greiner R, Konietzny U (2016) Phytase for food application. Food Technol Biotechnol 44:125–140Google Scholar
  22. Guney E, Oliva B (2012) Exploiting protein–protein interaction networks for genome-wide disease-gene prioritization. PLoS One.  https://doi.org/10.1371/journal.pone.0043557 Google Scholar
  23. Gupta RK, Gangoliya SS, Singh NK (2015) Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J Food Sci Technol 52:676–684.  https://doi.org/10.1007/s13197-013-0978-y CrossRefGoogle Scholar
  24. He Z, Honeycutt CW (2001) Enzymatic characterization of organic phosphorus in animal manure. J Environ Qual 30:1685–1692CrossRefGoogle Scholar
  25. He Z, Zhong J, Cheng HN (2013) Conformational change of metal phytates: solid state 1D 13C and 2D 1H–13C NMR spectroscopic investigations. J Food Agric Environ 11:965–970Google Scholar
  26. Kalsi HK, Singh R, Dhaliwal HS et al (2016) Phytases from Enterobacter and Serratia species with desirable characteristics for food and feed applications. 3 Biotech 6:64.  https://doi.org/10.1007/s13205-016-0378-x CrossRefGoogle Scholar
  27. Kerovuo J, Lauraeus M, Nurminen P et al (1998) Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Mcrobiol 64:2079–2085Google Scholar
  28. Konietzny U, Greiner R (2004) Bacterial phytase: potential application, in vivo function and regulation of its synthesis. Braz J Microbiol 35:11–18.  https://doi.org/10.1590/S1517-83822004000100002 CrossRefGoogle Scholar
  29. Konietzny U, Greiner R, Jany K-D (1994) Purification and characterization of a phytase from spelt. J Food Biochem 18:165–183.  https://doi.org/10.1111/j.1745-4514.1994.tb00495.x CrossRefGoogle Scholar
  30. Kumar V, Agrawal S (2014) An insight into protein sequences of PTP-like cysteine phytases. Nusant Biosci 6:97–101Google Scholar
  31. Kumar S, Tsai C-J, Nussinov R (1999) Factors enhancing protein thermostability. Protein Eng 13:179–191.  https://doi.org/10.1093/protein/13.3.179 CrossRefGoogle Scholar
  32. Kumar V, Sinha AK, Makkar HPS et al (2010) Dietary roles of phytate and phytase in human nutrition: a review. Food Chem 120:945–959.  https://doi.org/10.1016/j.foodchem.2009.11.052 CrossRefGoogle Scholar
  33. Kumar V, Singh G, Verma AK et al. (2012) In silico characterization of histidine acid phytase sequences. Enzyme Res 2012:845465.  https://doi.org/10.1155/2012/845465 CrossRefGoogle Scholar
  34. Kumar V, Singh G, Sangwan P et al (2014) Cloning, sequencing and in silico analysis of β-propeller phytase Bacillus licheniformis strain PB-13. Biotechnol Res Int 2014:841353 (1–11) CrossRefGoogle Scholar
  35. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol msw054.  https://doi.org/10.1093/molbev/msw054 Google Scholar
  36. Lei XG, Porres JM, Mullaney EJ et al (2007) Phytase: source, structure and application. In: Polaina J, MacCabe AP (eds) Industrial enzymes. Springer, Dordrecht, pp 505–529CrossRefGoogle Scholar
  37. Lei XG, Weaver JD, Mullaney EJ et al (2013) Phytase, a new life for an “old” enzyme. Annu Rev Anim Biosci 1:283–309CrossRefGoogle Scholar
  38. Mathew A, Verma A, Gaur S (2014) An in-silico insight into the characteristics of β-propeller phytase. Interdiscip Sci Comput Life Sci 6:133–139.  https://doi.org/10.1007/s12539-013-0010-2 CrossRefGoogle Scholar
  39. Meiler J, Baker D (2003) Rapid protein fold determination using unassigned NMR data. Proc Natl Acad Sci USA 100:15404–15409.  https://doi.org/10.1073/pnas.2434121100 CrossRefGoogle Scholar
  40. Mullaney EJ, Daly CB, Ullah AH (2000) Advances in phytase research. Adv Appl Microbiol 47:157–199.  https://doi.org/10.1016/S0065-2164(00)47004-8 CrossRefGoogle Scholar
  41. Nakashima BA, McAllister TA, Sharma R et al (2007) Diversity of phytases in the rumen. Microb Ecol 53:82–88.  https://doi.org/10.1007/s00248-006-9147-4 CrossRefGoogle Scholar
  42. Niño-Gómez DC, Rivera-Hoyos CM, Morales-Álvarez ED et al (2017) “In silico” characterization of 3-phytase A and 3-phytase B from Aspergillus niger. Enzyme Res 2017 9746191:1–23.  https://doi.org/10.1155/2017/9746191 CrossRefGoogle Scholar
  43. Pramanik K, Soren T, Mitra S et al (2017a) In silico structural and functional analysis of Mesorhizobium ACC deaminase. Comp Biol Chem 68:12–21.  https://doi.org/10.1016/j.compbiolchem.2017.02.005 CrossRefGoogle Scholar
  44. Pramanik K, Ghosh PK, Ray S et al (2017b) An in silico structural, functional and phylogenetic analysis with three dimensional protein modeling of alkaline phosphatase enzyme of Pseudomonas aeruginosa. J Genet Eng Biotechnol 15:527–537.  https://doi.org/10.1016/j.jgeb.2017.05.003 CrossRefGoogle Scholar
  45. Pramanik K, Pal P, Soren T et al. (2018) In silico structural, functional and phylogenetic analysis of Klebsiella phytases. Plant Biochem Biotechnol.  https://doi.org/10.1007/s13562-018-0445-y (in press) Google Scholar
  46. Quan C-S, Fan S-D, Zhang L-H et al. (2002) Purification and properties of a phytase from Candida krusei WZ-001. J Biosci Bioeng 94:419–425Google Scholar
  47. Quan Z, Quan Y, Wei B et al (2014) Protein–protein interaction network and mechanism analysis in ischemic stroke. Mol Med Rep 11:29–36.  https://doi.org/10.3892/mmr.2014.2696 CrossRefGoogle Scholar
  48. Ragon M, Hoh F, Aumelas A et al (2009) Structure of Debaryomyces castellii CBS 2923 phytase. Acta Crystallogr Sect F Struct Biol Cryst Commun 65:321–326.  https://doi.org/10.1107/S1744309109008653 CrossRefGoogle Scholar
  49. Richardson AE, Hadobas PA (1997) Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Can J Microbiol 43:509–516.  https://doi.org/10.1139/m97-073 CrossRefGoogle Scholar
  50. Rigden DJ (2008) The histidine phosphatase superfamily: structure and function. Biochem J 409:333–348.  https://doi.org/10.1042/BJ20071097 CrossRefGoogle Scholar
  51. Rodriguez E, Wood ZA, Karplus PA et al (2000) Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch Biochem Biophys 382:105–112CrossRefGoogle Scholar
  52. Schwartz AS, Yu J, Gardenour KR et al (2008) Cost-effective strategies for completing the interactome. Nat Methods 6:55–61CrossRefGoogle Scholar
  53. Shivange AV, Serwe A, Dennig A et al (2012) Directed evolution of a highly active Yersinia mollaretii phytase. Appl Microbiol Biotechnol 95:405–418.  https://doi.org/10.1007/s00253-011-3756-7 CrossRefGoogle Scholar
  54. Singh P, Kumar V, Agrawal S (2014) Evaluation of phytase producing bacteria for their plant growth promoting activities. Int J Microbiol 2014:426483.  https://doi.org/10.1155/2014/426483 Google Scholar
  55. Tazisong IA, Senwo ZN, Taylor RW et al (2008) Hydrolysis of organic phosphates by commercially available phytases: biocatalytic potentials and effects of ions on their enzymatic activities. J Food Agri Environ 6:500–505Google Scholar
  56. Tran TT, Hashim SO, Gaber Y et al (2011) Thermostable alkaline phytase from Bacillus sp. MD2: effect of divalent metals on activity and stability. J Inorg Biochem 105:1000–1007.  https://doi.org/10.1016/j.jinorgbio.2011.04.005 CrossRefGoogle Scholar
  57. Trivedi MV, Laurence JS, Siahaan TJ (2009) The role of thiols and disulfides in protein chemical and physical stability. Curr Protein Pept Sci 10:614–625CrossRefGoogle Scholar
  58. Tseng YH, Fang TJ, Tseng SM (2000) Isolation and characterization of a novel phytase from Penicillium simplicissimum. Folia Microbiol (Praha) 45:121–127CrossRefGoogle Scholar
  59. Verma A, Singh VK, Gaur S (2016) Computational based functional analysis of Bacillus phytases. Comput Biol Chem 60:53–58.  https://doi.org/10.1016/j.compbiolchem.2015.11.001 CrossRefGoogle Scholar
  60. Wise A (1982) Blood lead levels after chronic feeding to mice of lead acetate with calcium phylate in the diet. Bull Environ Contam Toxicol 29:550–553CrossRefGoogle Scholar
  61. Yadav PK, Singh G, Gautam B et al (2013) Molecular modeling, dynamics studies and virtual screening of Fructose 1, 6-biphosphate aldolase-II in community acquired-methicillin resistant Staphylococcus aureus (CA-MRSA). Bioinformation 9:158–164CrossRefGoogle Scholar
  62. Yanke LJ, Bae HD, Selinger LB et al (1998) Phytase activity of anaerobic ruminal bacteria. Microbiology 144:1565–1573CrossRefGoogle Scholar
  63. Yao MZ, Zhang YH, Lu WL et al (2012) Phytases: crystal structures, protein engineering and potential biotechnological applications. J Appl Microbiol 112:1–14CrossRefGoogle Scholar
  64. Zając A, Dymińska L, Lorenc J et al (2018) Syntheses, spectroscopic properties and molecular structure of silver phytate complexes-IR, UV-VIS studies and DFT calculations. J Mol Struct 1156:483–491CrossRefGoogle Scholar
  65. Zhang W, Mullaney EJ, Xin GL (2007) Adopting selected hydrogen bonding and ionic interactions from Aspergillus fumigatus phytase structure improves the thermostability of Aspergillus niger PhyA phytase. Appl Environ Microbiol 73:3069–3076.  https://doi.org/10.1128/AEM.02970-06 CrossRefGoogle Scholar
  66. Zhang R, Yang P, Huang H et al (2011) Two types of phytases (Histidine acid phytase and β-propeller phytase) in Serratia sp. TN49 from the gut of Batocera horsfieldi (Coleoptera) Larvae. Curr Microbiol 63:408–415.  https://doi.org/10.1007/s00284-011-9995-0 CrossRefGoogle Scholar
  67. Zhang Q, Zhang P, Cai Y (2016) The use of protein–protein interactions for the analysis of the associations between PM2.5 and some diseases. Biomed Res Int 2016:4895476.  https://doi.org/10.1155/2016/4895476 (1–7) Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Krishnendu Pramanik
    • 1
  • Shreyasi Kundu
    • 1
  • Sandipan Banerjee
    • 1
  • Pallab Kumar Ghosh
    • 1
  • Tushar Kanti Maiti
    • 1
  1. 1.Microbiology Laboratory, Department of BotanyThe University of BurdwanPurba BardhamanIndia

Personalised recommendations