3 Biotech

, 8:249 | Cite as

CoQ10 a super-vitamin: review on application and biosynthesis

Review Article

Abstract

Coenzyme Q10 (CoQ) or ubiquinone is found in the biological system which is synthesized by the conjugation of benzoquinone ring with isoprenoid chain of variable length. Coenzyme Q10 supplementation energizes the body and increases body energy production in the form of ATP and helps to treat various human diseases such as cardiomyopathy, muscular dystrophy, periodontal disease, etc. Reports of these potential therapeutic advantages of CoQ10 have resulted in its high market demand, which focus the researchers to work on this molecule and develop better bioprocess methods for commercial level production. At the moment, chemical synthesis, semi-synthetic method as well as bio-production utilizing microbes as biofactory are in use for the synthesis of CoQ10. Chemical synthesis involves use of cheap and easily available precursor molecules such as isoprenol, chloromethylquinone, vinylalane, and solanesol. Chemical synthesis methods due to the use of various solvents and chemicals are less feasible, which limits its application. The microbial production of CoQ10 has added advantages of being produced in optically pure form with high yield using inexpensive medium composition. Several bacteria, e.g., Agrobacterium, Paracoccus, Rhodobacterium, and yeast such as Candida, Rhodotorula are the potent ubiquinone producer. Some alternative biosynthetic pathway for designing of CoQ10 production coupled with metabolic engineering might help to increase CoQ10 production. The most common practiced strategy for strain development for commercial CoQ10 production is through natural isolation and chemical mutagenesis. Here, we have reviewed the chemical, semi-synthetic as well as microbial CoQ10 production in detail.

Keywords

Ubiquinone CoQ10 biosynthesis Metabolic engineering Antioxidant Isoprenoid 

Notes

Acknowledgements

The authors thank the Department of Biotechnology (DBT), Government of India, for providing financial support. The authors are thankful to Ms. Karuna Yadav for assisting in the preparation of this review article.

Compliance with ethical standards

Conflict of interest

The author declares no competing financial interest.

References

  1. Acosta MJ, Vazquez Fonseca L, Desbats MA, Cerqua C, Zordan R, Trevisson E et al (2016) Coenzyme Q biosynthesis in health and disease. Biochim Biophys Acta 1857(18):1079–1085CrossRefGoogle Scholar
  2. Anraku Y (1988) Bacterial electron transport chains. Annu Rev Biochem 57:101–132CrossRefGoogle Scholar
  3. Artuch R et al (2006) Cerebellar ataxia with coenzyme Q10 deficiency: diagnosis and follow-up after coenzyme Q10 supplementation. J Neurol Sci 246:153–158CrossRefGoogle Scholar
  4. Asencio C, Rodriguez-Hernandez MA, Briones P, Montoya J, Cortes A, Emperador S et al (2016) Severe encephalopathy associated to pyruvate dehydrogenase mutations and unbalanced coenzyme Q10 content. Eur J Hum Genet 24:367–372CrossRefGoogle Scholar
  5. Bader MW, Xie T, Yu CA, James CA (2000) Bardwell disulfide bonds are generated by quinone reduction. J BiolChem 275:26082–26088Google Scholar
  6. Balakumaran PA, Meenakshisundaram S (2015) Modeling of process parameters for enhanced production of Coenzyme Q10 from Rhodotorula glutinis. Prep Biochem Biotechnol 45:398–410CrossRefGoogle Scholar
  7. Beal MF (2004) Mitochondrial dysfunction and oxidative damage in Alzheimer’s and Parkinson’s diseases and coenzyme Q10 as a potential treatment. J Bioenerg Biomembr 36:381–386CrossRefGoogle Scholar
  8. Belogrudov GI, Lee PT, Jonassen T, Hsu AY, Gin P, Clarke CF (2001) Yeast COQ4 encodes a mitochondrial protein required for coenzyme Q synthesis. Arch Biochem Biophys 392:48–58CrossRefGoogle Scholar
  9. Campagnolo N, Johnston S, Collatz A, Staines D, Marshall-Gradisnik S (2017) Dietary and nutrition interventions for the therapeutic treatment of chronic fatigue syndrome/myalgic encephalomyelitis: a systematic review. J Hum Nutr Diet 30:247–259CrossRefGoogle Scholar
  10. Caso G, Kelly P, McNurlan MA, Lawson WE (2007) Effect of coenzyme Q10 on myopathic symptoms in patients treated with statins. Am J Cardiol 99:1409–1412CrossRefGoogle Scholar
  11. Choi GS, Kim YS, Seo JH, Ryu YW (2005) Restricted electron flux increases coenzyme Q10 production in Agrobacterium tumefaciens ATCC4452. Process Biochem 40:3225–3229CrossRefGoogle Scholar
  12. Choi J, Ryu Y, Park Y, Seo J (2009) Synergistic effects of chromosomal ispB deletion and dxs overexpression on coenzyme Q10 production in recombinant Escherichia coli expressing Agrobacterium tumefaciens dps gene. J Biotechnol 144:64–69CrossRefGoogle Scholar
  13. Cluis CP, Ekins A, Narcross L, Jiang H, Gold ND, Burja AM, Martin VJ (2011) Identification of bottlenecks in Escherichia coli engineered for the production of CoQ10. Metab Eng 13:733–744CrossRefGoogle Scholar
  14. Croteau R, Lange MB, Rujan T, Martin W (2000) Isoprenoid biosynthesis:the evolution of two ancient and distinct pathways across genomes.PronatlacadSci. USA 97:13172–13177CrossRefGoogle Scholar
  15. Dallner G, Sindelar PJ (2000) Regulation of ubiquinone metabolism. Free Radic Biol Med 29(3–4):285–294CrossRefGoogle Scholar
  16. Dhanasekaran M, Ren J (2005) The emerging role of coenzyme Q-10 in aging, neurodegeneration, cardiovascular disease, cancer and diabetes mellitus. Curro Neurovasc Res 2:447–459CrossRefGoogle Scholar
  17. Fan L, Feng Y, Chen GC, Qin LQ, Fu CL, Chen LH (2017) Effects of coenzyme Q10 supplementation on inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 119:128–136CrossRefGoogle Scholar
  18. Flowers N, Hartley L, Todkill D, Stranges S, Rees K (2014) Co-enzyme Q10 supplementation for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev 12:CD010405.  https://doi.org/10.1002/14651858.CD010405.pub2 Google Scholar
  19. Fukushima T, Tanaka K, Lim H, Mariyama M (2002) Mechanism of cytotoxicity of Paraquat. Environ Health Prev Med (7): 89–94Google Scholar
  20. Genova ML, Lenaz G (2014) Functional role of mitochondrial respiratory supercomplexes. Biochim Biophys Acta 1837:427–443CrossRefGoogle Scholar
  21. Gin P, Hsu AY, Rothman SC, Jonassen T, Lee PT, Tzagoloff A, Clarke CF (2003) The Saccharomyces cerevisiae COQ6 gene encodes a mitochondrial flavin-dependent monooxygenase required for coenzyme Q biosynthesis. J Biol Chem 278:25308–25316CrossRefGoogle Scholar
  22. Gorman GS, Chinnery PF, Dimauro S, Hirano M, Koga Y, Mcfarland R et al (2016) Mitochondrial diseases. Nat Rev Dis Primers 2:16080.  https://doi.org/10.1038/nrdp.2016.80 CrossRefGoogle Scholar
  23. Ha SJ, Kim SY, Seo JH, Oh DK, Lee JK (2007) Optimization of culture conditions and scale-up to pilot and plant scales for coenzyme Q10 production by Agrobacterium tumefaciens. Appl Microbiol Biotechnol 74: 974–980CrossRefGoogle Scholar
  24. Ha SJ, Kim SY, Seo JH, Sim W, Moon HJ, Lee JK (2008) Lactate increases coenzyme Q10 production by Agrobacterium tumefacians. World J MicrobiolBiotechnol 24:887–890CrossRefGoogle Scholar
  25. Hansen IL (1976) Bioenergetics in clinical medicine. Gingival leucocytic deficiencies of coenzyme Q10 in patients with periodontal disease. Res Commun Chempatholpharmacol 14(4):729–738Google Scholar
  26. Herebian D, Seibt A, Smits SHJ, Rodenburg RJ, Mayatepek E, Distelmaier F (2017) 4-Hydroxybenzoic acid restores CoQ10 biosynthesis in human COQ2 deficiency. Ann Clin Transl Neurol 4(12):902–908CrossRefGoogle Scholar
  27. Hernández-Camacho JD, Bernier M, Guillermo López-Lluch G, Plácido NP (2018) Coenzyme Q10 supplementation in aging and disease. Front Physiol.  https://doi.org/10.3389/fphys.2018.00044
  28. Hodgson JM, Watts GF, Playford DA, Burke V, Croft KD (2002) Coenzyme Q10 improves blood pressure and, glycaemic control: a controlled trial in subjects with Type 2 diabetes. Ear J ClinNutl 56:1137–1142Google Scholar
  29. Huang M, Wang Y, Liu J, Mao Z (2011) Multiple strategies for metabolic engineering of Escherichia coli for efficient production of coenzyme Q10. Chin J Chem Eng 19:316–326CrossRefGoogle Scholar
  30. Ingledew WJ, Poole RK (1984) The respiratory chains of Escherichia coli. Microbial Rev 48:222–271Google Scholar
  31. Istvan E (2003) Statin inhibition of HMG-CoA reductase: a 3-dimensional view. Atheroscler Suppl 4(1):3–8CrossRefGoogle Scholar
  32. Jeya M, Moon HJ, Lee JL, Kim IW, Lee JK (2010) Current state of coenzyme Q(10) production and its applications. Appl Microbiol Biotechnol 85(6):1653–1663CrossRefGoogle Scholar
  33. Johnson A, Gin P, Marbois BN, Hsieh EJ, Wu M, Barros MH, Clarke CF, Tzagoloff A (2005) COQ9, a new gene required for the biosynthesis of coenzyme Q in Saccharomyces cerevisiae. J BiolChem 280:31397–31404Google Scholar
  34. Klingen AR, Palsdottir H, Hunte C, Ullmann GM (2007) Redox-linked protonation state changes in Cytochrome bc1 identified by Poisson–Boltzmann electrostatics calculations. Biochim Biophys Acta 1767: 204–221Google Scholar
  35. Kwon O, Kotsakis A, Meganathan R (2000) Ubiquinone (coenzyme Q) biosynthesis. inEscherichia coli: identification of the ubiFgene. FEMS Microbiol Lett 186:157–161CrossRefGoogle Scholar
  36. Langsjoen PH, Langsjoen PH, Folkers K, Richardson P (1991) Treatment of patients with human immunodeficiency virus infection with coenzyme Q10. In: Folkers K, Littarru GP, Yamagami T (eds) Biomedical and Clinical Aspects of Coenzyme Q, vol 6. Elsevier Science Publishers, New York, pp 409–415Google Scholar
  37. Lee SQE, Tan TS, Kawamukai M, Chen ES (2017) Cellular factories for coenzyme Q10 production. Microb Cell Fact (2017): 16–39Google Scholar
  38. Lenaz G, Fato R, Formiggini G, Genova ML (2007) The role of Coenzyme Q in mitochondrial electron transport. Mitochondrion 7:S8-S33CrossRefGoogle Scholar
  39. Lipshutz BH, Mollard P, Pfeiffer S, Chrisman W (2002) A short, highly efficient synthesis of Coenzyme Q10. J Am ChemSoc 124(48):14282–14283CrossRefGoogle Scholar
  40. Lipshutz BH, Lower A, Berl V, Schein K, Wetterich F (2005) An improved synthesis of the “miracle nutrient” coenzyme Q10. Org Lett 7(19):4095–4097CrossRefGoogle Scholar
  41. Lipshutz BH, Butler T, Lower A, Servesko J (2007) Enhancing regiocontrol in carboaluminations of terminal alkynes.application to the one-pot synthesis of coenzyme Q10. Org Lett 9(19):3737–3740CrossRefGoogle Scholar
  42. Littarru GP, Tiano L, Belardinelli R, Watts GF (2011) Coenzyme Q10, endothelial function, and cardiovascular disease. BioFactors 37: 366–373CrossRefGoogle Scholar
  43. Liu J, Wang L, Zhan SY, Xia Y (2011) Coenzyme Q10 for Parkinson’s disease. Cochrane Database Syst Rev 12:CD008150.  https://doi.org/10.1002/14651858.CD008150.pub Google Scholar
  44. López LC, Schuelke M, Quinzii CM, Kanki T, Rodenburg RJT, Naini A, DiMauro S, Hirano M (2006) Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am J Hum Genet 79:1125–1129CrossRefGoogle Scholar
  45. Luo M, Yang X, Hu J, Ruan X, Mu F, Fu Y (2017) The Synthesis of Coenzyme Q10. Curr Org Chem 21(6): 489–450CrossRefGoogle Scholar
  46. Martin SF, Burón I, Espinosa JC, Castilla J, Villalba JM, Torres JM (2007) Coenzyme Q and proteinllipid oxidation in a BSE-infected transgenic mouse model. Free Radic Bioi Med 42:1723–1729CrossRefGoogle Scholar
  47. Meganathan R (2001) Ubiquinone biosynthesis in microorganisms. FEMS Microbiol 203(2):131–139CrossRefGoogle Scholar
  48. Miyoshi H (2005) Inhibitor of mitochondrial respiratory enzymes. J pesticidal sci 30(2):120–121CrossRefGoogle Scholar
  49. Mollet J, Giurgea I, Schlemmer D, Dallner G, Chretien D, Delahodde A, Bacq D, de Lonlay P, Munnich A, Rötig A (2007) Prenyldiphosphate synthase. subunit IIPDSSJI and OH-benzoate polyprenyltransferase I (COQ2) mutations in ubiquinone deficiency and oxidative phosphorylation disorders. J Clin Invest Mar 117(3):765–772CrossRefGoogle Scholar
  50. Müller T, Büttner T, Gholipour AF, Kuhn W (2003) Coenzyme Q10 supplementation provides mild symptomatic benefit in patients with Parkinson’s disease. Neurosci Lett 341(3):201–204CrossRefGoogle Scholar
  51. Negishi E, Liou S-Y, Xu C, Huo S (2002) A novel, highly selective, and general methodology for the synthesis of 1,5-diene-containing oligoisoprenoids of all possible geometrical combinations exemplified by an iterative and convergent synthesis of Coenzyme Q10. Organic Lett 4(2):261–264CrossRefGoogle Scholar
  52. Pahari SK, Ghosh S, Halder S, Jana M (2016) Role of Coenzyme Q10 in human life. RJ PT 9(6):635–640Google Scholar
  53. Prakash S, Sunitha J, Hans M (2010) Role of coenzyme Q10 as an antioxidant and bioenergizer in periodontal diseases. Indian J Pharmacol 42(6):334–337CrossRefGoogle Scholar
  54. Quinzii CM, Kattah AG, Naini A, Akman HO, Mootha VK, DiMauro S, Hirano M (2005) Coenzyme Q deficiency and cerebellar ataxia associated with an aprataxin mutation. Neurology 64:539–541CrossRefGoogle Scholar
  55. Quinzii C, Naini A, Salviati L, Trevisson E, Navas P, DiMauro S, Hirano M (2006) A mutation in para-hydroxybenzoatepolyprenyl transferase (COQ2) causes primary Coenzyme Q10 deficiency. Am J Hum Genet 78:345–349CrossRefGoogle Scholar
  56. Ravada SR, Emani LR, Garaga MR, Meka B, Golakoti T (2009) Synthesis of Coenzyme Q10. Am J Infect Dis 5(2):83–89CrossRefGoogle Scholar
  57. Rodriguez-Aguilera JC, Cortes AB, Fernandez-Ayala DJ, Navas P (2017) Biochemical assessment of coenzyme Q10 deficiency. J Clin Med 6:E27.  https://doi.org/10.3390/jcm6030027 CrossRefGoogle Scholar
  58. Rousseau G, Desrosiers C, Varin F (1998) A comparison of the effects of lovastatin and pravastatin on ubiquinone tissue levels in rats. Curr Ther Res 59(9):666–679CrossRefGoogle Scholar
  59. Thai QD, Adam YH, Jonassen T, Lee PT, Catherine FC (2001) A defect in coenzyme Q biosynthesis is responsible for the respiratory deficiency in Saccharomyces cerevisiae abe1 mutants. J BiolChem 276:18161–18168Google Scholar
  60. Tiano L, Belardinelli R, Carnevali P, Principi F, Seddaiu G, Littarru GP (2007) Effect of coenzyme Q10 administration on endothelial function and extra cellular super oxide dismutase in patients with ischaemic heart disease: a double-blind, randomized controlled study. Eur Heart 28(18):2249–2255CrossRefGoogle Scholar
  61. Tokdar P, Khora SS (2017) Optimization of fermentation process condition for the production of CoQ10 using Paracoccus denitrificans ATCC 19367 fusant strain PF-P1. Int J Eng Res Technol 6(7):135–143Google Scholar
  62. Tokdar P, Vanka R, Ranadive P, George S, Khora SS, Deshmukh SK (2014a) Protoplast fusion technology for improved production of coenzyme Q10 using Paracoccus denitrificans ATCC 19367 mutant strains. Biochem Tech 5(2):685–692Google Scholar
  63. Tokdar P, Ranadive P, Kshirsagar R, Khora SS, Deshmukh SK (2014b) Influence of substrate feeding and process parameters on production of coenzyme Q10 Using Paracoccus denitrificans ATCC 19367 mutant strain P-87. Adv Biosci Biotechnol 5:966–977CrossRefGoogle Scholar
  64. Tokdar P, Sanakal A, Ranadive P, Khora SS, George S, Deshmukh SK (2015) Molecular, physiological and phenotypic characterization of Paracoccus denitrificans ATCC 19367 mutant strain P-87 producing improved coenzyme Q10. Indian J Microbiol 55(2):184–193CrossRefGoogle Scholar
  65. Tran UC, Marbois B, Gin P, Gulmezian M, Jonassen T, Clarke CF (2006) Complementation of Saccharomyces cerevisiae coq7 mutants by mitochondrial targeting of the Escherichia. coliUbiF polypeptide: two functions of yeast Coq7 polypeptide in coenzyme Q biosynthesis. J Biol Chem 281:16401–16409CrossRefGoogle Scholar
  66. Turunen M, Swiezewska E, Chojnacki T, Sindelar P, Dallner G (2002) Regulatory aspects of coenzyme Q metabolism. Free Radic Res 36:437–443CrossRefGoogle Scholar
  67. Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochim Biophys Acta 660(2):171–199CrossRefGoogle Scholar
  68. Varela-López A, Giampieri F, Battino M, Quiles JL (2016) Coenzyme Q and its role in the dietary therapy against Aging. Molecules 21(3):373CrossRefGoogle Scholar
  69. Yasukazu Y, Mieko H, Yoko H, Etsuo N (2006) evaluation of the dietary effects of coenzyme Q in vivo by the oxidative stress marker, hydroxyoctadecadienoic acid and its stereoisomer ratio. Biochim Biophys Acta 1760: 1558–1568CrossRefGoogle Scholar
  70. Yoshida H, Kotani Y, Ochiai K, Araki K (1998) Production of ubiquione-10 using bacterium. J Gen ApplMicrobiol 44:19–26CrossRefGoogle Scholar
  71. Zhu J, Egawa T, Yeh S-R, Yu L, Yu C-A (2007) Simultaneous reduction of iron-sulfur protein and Cytochrome beL) during ubiquinol oxidation in Cytochrome bc1 complex. Proc Nail AcadSci USA 104:4864–4869CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Bioprocess Engineering Laboratory, Department of BiotechnologyCentral University of HaryanaMahendergarhIndia

Personalised recommendations