Advertisement

3 Biotech

, 8:226 | Cite as

Association analysis of drought tolerance in cut chrysanthemum (Chrysanthemum morifolium Ramat.) at seedling stage

  • Pirui Li
  • Jiangshuo Su
  • Zhiyong Guan
  • Weimin Fang
  • Fadi Chen
  • Fei ZhangEmail author
Original Article

Abstract

Understanding the genetic architecture is a prerequisite for crop improvement. The current research aimed to characterize the extent of genetic variation of drought tolerance harbored in a global collection of 159 chrysanthemum cultivars over 2 years. An average subordinate function value (ASFV), integrating the wilting index, the fresh weight retention rate, and the survival rate after re-watering under two drought-stressed trials, was used to quantify the level of drought tolerance. The performance of ASFV was generally correlated between the 2 years; and a high magnitude (0.95) of broad-sense heritability, coupled with the moderate genetic advance, was estimated for the ASFV. By applying MLM model with both population structure and kinship matrix as covariates association mapping identified 16 markers linked to drought tolerance, with the proportion of the phenotypic variation explained by an individual marker ranging from 4.4 to 7.6%. Of the eight markers predictive across the 2 years, four (E11M24-9, E3M2-8, E1M5-5, and EST-SSR34-3) were identified as favorable alleles for drought tolerance. Several cultivars that carry at least three of the four favorable alleles were identified as potential donor parents for future improvement of the drought tolerance. The findings provide an insight into the genetic basis of the drought tolerance in chrysanthemum and will, therefore, aid in developing new cultivars with enhanced tolerance against drought stress.

Keywords

Association mapping Chrysanthemum Drought tolerance Favorable allele Genetic architecture 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant nos. 31572152, 31370699 and 31272196).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

13205_2018_1258_MOESM1_ESM.jpg (578 kb)
Fig. S1 Five wilting index (WI) scales of phenotypic variation in the response of chrysanthemum rooted cuttings exposed to drought stress (JPG 578 KB)
13205_2018_1258_MOESM2_ESM.docx (40 kb)
Table S1 The panel of 159 chrysanthemum accessions, showing provenance, ASFV and grade of drought tolerance (DOCX 39 KB)

References

  1. Ahuja I, de Vos RC, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trend Plant Sci 15(12):664–674CrossRefGoogle Scholar
  2. Bac-Molennar JA, Granier C, Keurentjes JJB, Vreugdenhil D (2016) Genome-wide association mapping of time-dependent growth response to moderate drought stress in Arabidopsis. Plant Cell Environ 39:88–102CrossRefGoogle Scholar
  3. Bahrami F, Arzani A, Karimi V (2014) Evaluation of yield-based drought tolerance indices for screening safflower genotypes. Agron J 106(4):1219–1224CrossRefGoogle Scholar
  4. Bradbury PJ, Zhang ZW, Kroon DE, Casstevens RM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635CrossRefPubMedGoogle Scholar
  5. Breseghello F, Sorrells ME (2016) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46(3):1323–1330CrossRefGoogle Scholar
  6. Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Marè C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res 105:1–14CrossRefGoogle Scholar
  7. Chen S, Cui X, Chen Y, Gu C, Miao H, Gao H, Chen F, Liu Z, Guan Z, Fang W (2011) CgDREBa transgenic chrysanthemum confers drought and salinity tolerance. Environ Exp Bot 74:255–260CrossRefGoogle Scholar
  8. Chen L, Chen Y, Jiang J, Chen S, Chen F, Guan Z, Fang W (2012) The constitutive expression of Chrysanthemum dichrum ICE1 in Chrysanthemum grandiflorum improves the level of low temperature, salinity and drought tolerance. Plant Cell Rep 31:1747–1758CrossRefPubMedGoogle Scholar
  9. Deng Y, Jiang J, Chen S, Huang C, Fang W, Chen F (2012) Drought tolerance of intergeneric hybrids between Chrysanthemum morifolium and Ajania przewalskii. Sci Hortic 148:17–22CrossRefGoogle Scholar
  10. Hao Z, Li X, Xie C, Weng J, Li M, Zhang D, Liang X, Liu L, Liu S, Zhang S (2011) Identification of functional genetic variations underlying drought tolerance in maize using SNP markers. J Integr Plant Biol 53(8):641–652CrossRefPubMedGoogle Scholar
  11. Hu B, Fu X, Zhang T, Wan Y, Li X, Huang Y, Dai L, Luo X, Xie J (2011) Genetic analysis on characteristics to measure drought resistance using Dongxiang wild rice (Oryza rufupogon Griff.) and its derived backcross inbred lines population at seedling stage. Agric Sci China 10(11):1653–1664CrossRefGoogle Scholar
  12. Juenger TE (2013) Natural variation and genetic constraints on drought tolerance. Curr Opin Plant Biol 16:274–281CrossRefPubMedGoogle Scholar
  13. Kato Y, Hirotsu S, Nemoto K, Yamagishi J (2008) Identification of QTLs controlling rice drought tolerance at seedling stage in hydroponic culture. Euphytica 260:423–430CrossRefGoogle Scholar
  14. Klie M, Menz I, Linde M, Thomas D (2016) Strigolactone pathway genes and plant architecture: association analysis and QTL detection for horticultural traits in chrysanthemum. Mol Genet Genomics 291:957–969CrossRefPubMedGoogle Scholar
  15. Li R, Wang C, Dai S, Luo X, Li B, Zhu J, Lu J, Liu Q (2012) The association analysis of phenotypic traits with SRAP markers in chrysanthemum. Sci Agric Sin 45(7):1355–1364Google Scholar
  16. Li P, Song A, Gao C, Wang L, Wang Y, Sun J, Jiang J, Chen F, Chen S (2015) Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants. Plant Cell Rep 34:1365–1378CrossRefPubMedGoogle Scholar
  17. Li P, Zhang F, Chen S, Jiang J, Wang H, Su J, Fang W, Guan Z, Chen F (2016) Genetic diversity, population structure and association analysis in cut chrysanthemum (Chrysanthemum morifolium Ramat.). Mol Genet Genom 291(3):1117–1125CrossRefGoogle Scholar
  18. Lu Y, Zhang S, Shah T, Xie C, Hao Z, Li X, Farkhari M, Ribaut JM, Rong T, Xu Y (2010) Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc Nat Acad Sci USA 107(45):19585–19590CrossRefPubMedGoogle Scholar
  19. Mardeh SS, Ahmadi A, Poustini K, Mohammadi V (2006) Evaluation of drought resistance indices under various environmental conditions. Field Crop Res 98(2–3):222–229CrossRefGoogle Scholar
  20. Peng H, Zhang F, Jiang J, Chen S, Fang W, Guan Z, Chen F (2015) Identification of quantitative trait loci for branching traits of spray cut chrysanthemum. Euphytica 202:385–392CrossRefGoogle Scholar
  21. Pungulani LLM, Millner JP, Williams WM, Banda M (2013) Improvement of leaf wilting scoring system in cowpea (Vigna unguiculata (L) Walp.): from qualitative scale to quantitative index. Aust J Crop Sci 7(9):1262–1269Google Scholar
  22. Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MV, Radhakrishnan T, Bertioli DJ, Knapp SJ, Varshney RK (2011) Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet 122:1119–1132CrossRefPubMedGoogle Scholar
  23. Song A, An J, Guan Z, Jiang J, Chen F, Lou W, Fang W, Liu Z, Chen S (2014) The constitutive expression of a two transgene construct enhances the abiotic stress tolerance of chrysanthemum. Plant Physiol Biochem 80:114–120CrossRefPubMedGoogle Scholar
  24. Su J, Zhang F, Li P, Guan Z, Fang W, Chen F (2016) Genetic variation and association mapping of waterlogging tolerance in chrysanthemum. Planta 244(6):1241–1252CrossRefPubMedGoogle Scholar
  25. Sun C, Chen F, Teng N, Liu Z, Fang W, Hou X (2010) Interspecific hybrids between Chrysanthemum grandiflorum (Ramat.) Kitamura and C. indicum (L.) Des Moul. and their drought tolerance evaluation. Euphytica 174:51–60CrossRefGoogle Scholar
  26. Sun J, Gu J, Zeng J, Hang S, Song A, Chen F, Fang W, Jiang J, Chen F (2013) Changes in leaf morphology, antioxidant activity and photosysnthesis capacity in two different drought-tolerant cultivars of chrysanthemum during and after water stress. Sci Hortic 161:429–458CrossRefGoogle Scholar
  27. Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Assoc, SunderlandGoogle Scholar
  28. Tavakol E, Elbadry N, Tondelli A, Cattivelli L, Rossini L (2016) Genetic dissection of heading date and yield under Mediterranean dry climate in barley (Hordeum vulgare L.). Euphytica 212:343–353CrossRefGoogle Scholar
  29. Wang P, Zhou G, Cui K, Li Z, Yu S (2012) Clustered QTL for source leaf size and yield traits in rice (Oryza sativa L.). Mol Breed 29:99–113CrossRefGoogle Scholar
  30. Wang C, Zhang F, Guan Z, Chen S, Jiang J, Fang W, Chen F (2014) Inheritance and molecular markers for aphid (Macrosiphoniella sanbourni) resistance in chrysanthemum (Chrysanthemum morifolium Ramat.). Sci Hortic 180:220–226CrossRefGoogle Scholar
  31. Witcombe JR, Hollington PA, Howarth CJ, Reader S, Steele KA (2008) Breeding for abiotic stresses for sustainable agriculture. Philos Trans R Soc B 363:703–716CrossRefGoogle Scholar
  32. Xu Y, Gao S, Yang Y, Huang M, Cheng L, Wei Q, Fei Z, Gao J, Hong B (2013) Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress. BMC Genom 14:662CrossRefGoogle Scholar
  33. Yang X, Guo Y, Yan J, Zhang J, Song T, Rocheford T, Li J (2010) Major and minor QTL and epistasis contribute to fatty acid compositions and oil concentration in high-oil maize. Theor Appl Genet 120:665–678CrossRefPubMedGoogle Scholar
  34. Yang Y, Ma C, Xu Y, Wei Q, Imtiaz M, Lan H, Gao S, Cheng L, Wang M, Fei Z, Hong B, Gao J (2014) A zinc finger protein regulates flowering time and abiotic stress tolerance in chrysanthemum by modulating gibberellin biosynthesis. Plant Cell 26:2038–2054CrossRefPubMedPubMedCentralGoogle Scholar
  35. Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160CrossRefPubMedGoogle Scholar
  36. Yu X, Bai G, Liu S, Luo N, Wang Y, Richmond DS, Pijut PM, Jackson SA, Yu J, Jiang Y (2013) Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions. J Exp Bot 64(6):1537–1551CrossRefPubMedPubMedCentralGoogle Scholar
  37. Zanke CD, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Neumann F, Eichhorn A, Polley A, Jaenecke C, Ganal MW, Röder MS (2015) Analysis of main effect QTL for thousand grain weight in European winter wheat (Triticum aestivum L.) by genome-wide association mapping. Front Plant Sci 6:644CrossRefPubMedPubMedCentralGoogle Scholar
  38. Zhang C, Hong B, Li J, Gao J (2005) A simple method to evaluate the drought tolerance of ground-cover chrysanthemum (Dendranthema × grandiflorum) rooted cuttings. Sci Agric Sin 37(4):789–796Google Scholar
  39. Zhang F, Chen S, Chen F, Fang W, Chen Y, Li F (2011) SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium). Mol Breeding 27:11–23CrossRefGoogle Scholar
  40. Zhang F, Jiang J, Chen S, Chen F, Fang W (2012) Mapping single-locus and epistatic quantitative trait loci for plant architectural traits in chrysanthemum. Mol Breed 30:1027–1036CrossRefGoogle Scholar
  41. Zhang F, Chen S, Jiang J, Guan Z, Fang W, Chen F (2013) Genetic mapping of quantitative trait loci underlying flowering time in chrysanthemum (Chrysanthemum morifolium). PLoS One 8(12):e83023CrossRefPubMedPubMedCentralGoogle Scholar
  42. Zhang P, Zhong K, Tong H, Shahid MQ, Li J (2016) Associaiton mapping for aluminum tolerance in a core collection of rice landraces. Front Plant Sci 7:1415PubMedPubMedCentralGoogle Scholar
  43. Zheng H, Wang J, Zhao H, Sun J, Guo L, Zou D (2015) Genetic structure, linkage disequilibrium and association mapping of salt tolerance in japonica rice germplasm at the seedling stages. Mol Breed 35(7):1–16CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Pirui Li
    • 1
    • 2
  • Jiangshuo Su
    • 1
  • Zhiyong Guan
    • 1
  • Weimin Fang
    • 1
  • Fadi Chen
    • 1
  • Fei Zhang
    • 1
    Email author
  1. 1.The Key Laboratory of Landscape Agriculture, Ministry of Agriculture, College of HorticultureNanjing Agricultural UniversityNanjingChina
  2. 2.Institute of BotanyJiangsu Province and Chinese Academy of SciencesNanjingChina

Personalised recommendations