Advertisement

3 Biotech

, 8:235 | Cite as

Genome-wide association study reveals candidate genes related to low temperature tolerance in rice (Oryza sativa) during germination

  • Heng Wang
  • Ah-Rim Lee
  • So-Yeon Park
  • Sang-Hyeon Jin
  • Joohyun Lee
  • Tae-Ho Ham
  • Yongjin Park
  • Wei-Guo Zhao
  • Soon-Wook KwonEmail author
Original Article

Abstract

In this study, relative germination percentage (RGP) and delayed mean germination time (DMGT) were measured in various rice accessions at the germination stage and carried out association analysis to identify candidate genes related to low temperature germination (LTG) using a natural population comprising 137 rice cultivars and inbred lines selected from the Korean rice core set. Genome-wide association study using ~ 1.44 million high-quality SNPs, which were identified by re-sequencing all rice collections, revealed 48 candidate genes on chromosome 10 and 55 candidate genes on chromosome 11 in the high peak SNP sites of associated loci for RGP and DMGT, respectively. By detecting highly associated variations located inside genic regions and performing functional annotation of the genes, we detected 23 candidate genes for RGP and 18 genes for DMGT for LTG. In addition, the haplotype and sequence analysis of the candidate gene (Os10g0371100) with RGP trait and the candidate gene (Os11t0104240-00) with DMGT revealed correlation between sequences of functional variations and phenotypes. Several novel LTG-related candidate genes previously were known for the function during rice germination and uncovered their substantial natural variations. These candidate genes represent valuable resources for molecular breeding and genetic improvement of cold tolerance during rice germination.

Keywords

Oryza sativa L. Low temperature germination Re-sequencing GWAS Haplotype 

Notes

Acknowledgements

This work was supported by National Research Foundation of Korea (NRF) grant funded by the Korean government (NRF-2015R1C1A1A01054699).

Compliance with ethical standards

Conflict of interest

All the authors declare that they have on conflict of interest in the publication.

Supplementary material

13205_2018_1252_MOESM1_ESM.docx (48 kb)
Supplementary material 1 (DOCX 48 KB)
13205_2018_1252_MOESM2_ESM.xlsx (13 kb)
Supplementary material 2 (XLSX 12 KB)

References

  1. Agalou A, Purwantomo S, Övernäs E, Johannesson H, Zhu X, Estiati A et al (2008) A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members. Plant Mol Biol 66(1–2):87–103.  https://doi.org/10.1007/s11103-007-9255-7 CrossRefPubMedGoogle Scholar
  2. Almansouri M, Kinet JM, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant soil 231(2):243–254.  https://doi.org/10.1023/A:1010378409663 CrossRefGoogle Scholar
  3. Andaya VC, Tai TH (2006) Fine mapping of the qCTS12 locus, a major QTL for seedling cold tolerance in rice. Theor Appl Genet 113(3):467–475.  https://doi.org/10.1007/s00122-006-0311-5 CrossRefPubMedGoogle Scholar
  4. Boonburapong B, Buaboocha T (2007) Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. BMC Plant Biol 7(1):4.  https://doi.org/10.1186/1471-2229-7-4 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Borjas AH, De Leon TB, Subudhi PK (2016) Genetic analysis of germinating ability and seedling vigor under cold stress in US weedy rice. Euphytica 208(2):251–264.  https://doi.org/10.1007/s10681-015-1584-z CrossRefGoogle Scholar
  6. Bosetti F, Montebelli C, Novembre ADL, Chamma HP, Pinheiro JB (2012) Genetic variation of germination cold tolerance in Japanese rice germplasm. Breed Sci 62(3):209–215.  https://doi.org/10.1270/jsbbs.62.209 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635.  https://doi.org/10.1093/bioinformatics/btm308 CrossRefPubMedGoogle Scholar
  8. Chen JQ, Dong Y, Wang YJ, Liu Q, Zhang JS, Chen SY (2003) An AP2/EREBP-type transcription-factor gene from rice is cold-inducible and encodes a nuclear-localized protein. Theor Appl Genet 107(6):972–979.  https://doi.org/10.1007/s00122-003-1346-5 CrossRefPubMedGoogle Scholar
  9. Chen L, Lou QJ, Sun ZX, Xing YZ, Yu XQ, Luo LJ (2006) QTL mapping of low temperature on germination rate of rice. Rice Sci 13(2):93–98Google Scholar
  10. Cheng S, Huang Y, Zhu N, Zhao Y (2014) The rice WUSCHEL-related homeobox genes are involved in reproductive organ development, hormone signaling and abiotic stress response. Gene 549(2):266–274.  https://doi.org/10.1016/j.gene.2014.08.003 CrossRefPubMedGoogle Scholar
  11. Cruz RPD, Milach SCK (2004) Cold tolerance at the germination stage of rice: methods of evaluation and characterization of genotypes. Sci Agricola 61(1):1–8.  https://doi.org/10.1590/S0103-90162004000100001 CrossRefGoogle Scholar
  12. Cui K, Peng S, Xing Y, Xu C, Yu S, Zhang Q (2002) Molecular dissection of seedling-vigor and associated physiological traits in rice. TAG Theor Appl Genet 105(5):745–753.  https://doi.org/10.1007/s00122-002-0908-2 CrossRefPubMedGoogle Scholar
  13. Ellis RH, Roberts EH (1981) The quantification of ageing and survival in orthodox seeds. Seed Sci Technol (Neth)Google Scholar
  14. Fujino K (2004) A major gene for low temperature germinability in rice (Oryza sativa L.). Euphytica 136(1):63–68.  https://doi.org/10.1023/B:EUPH.0000019519.43951.67 CrossRefGoogle Scholar
  15. Fujino K, Sekiguchi H, Matsuda Y, Sugimoto K, Ono K, Yano M (2008) Molecular identification of a major quantitative trait locus, qLTG3–1, controlling low-temperature germinability in rice. Proc Natl Acad Sci 105(34):12623–12628.  https://doi.org/10.1073/pnas.0805303105 CrossRefPubMedGoogle Scholar
  16. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al (2002) The structure of haplotype blocks in the human genome. Science 296(5576):2225–2229.  https://doi.org/10.1126/science.1069424 CrossRefPubMedGoogle Scholar
  17. Hu S, Lübberstedt T, Zhao G, Lee M (2016) QTL mapping of low-temperature germination ability in the maize IBM Syn4 RIL population. PloS One 11(3):e0152795CrossRefPubMedPubMedCentralGoogle Scholar
  18. Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41(4):494CrossRefPubMedGoogle Scholar
  19. Huang X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42(11):961–967.  https://doi.org/10.1038/ng.695 CrossRefPubMedGoogle Scholar
  20. Huang X, Zhao Y, Li C, Wang A, Zhao Q, Li W et al (2012) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44(1):32–39.  https://doi.org/10.1038/ng.1018 CrossRefGoogle Scholar
  21. Hyun DY, Oh M, Choi YM, Lee S, Lee MC, Oh S (2017) Morphological and molecular evaluation for germinability in rice varieties under low-temperature and anaerobic conditions. J Crop Sci Biotechnol 20(1):21–27.  https://doi.org/10.1007/s12892-016-0083-1 CrossRefGoogle Scholar
  22. Iwata N, Fujino K (2010) Genetic effects of major QTLs controlling low-temperature germinability in different genetic backgrounds in rice (Oryza sativa L.). Genome 53(10):763–768CrossRefPubMedGoogle Scholar
  23. Ji SL, Jiang L, Wang YH, Liu SJ, Liu X, Zhai HQ, Yoshimura A, Wan JM (2008) QTL and epistasis for low temperature germinability in rice. Acta Agron Sin 34(4):551–556Google Scholar
  24. Ji SL, Jiang L, Wang YH, Zhang WW, Liu X, Liu SJ et al (2009) Quantitative trait loci mapping and stability for low temperature germination ability of rice. Plant Breed 128(4):387–392.  https://doi.org/10.1111/j.1439-0523.2008.01533.x CrossRefGoogle Scholar
  25. Jiang L, Liu S, Hou M, Tang J, Chen L, Zhai H et al (2006) Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.). Field Crops Res 98(1):68–75.  https://doi.org/10.1016/j.fcr.2005.12.015 CrossRefGoogle Scholar
  26. Jiang N, Shi S, Shi H, Khanzada H, Wassan GM, Zhu C et al (2017) Mapping QTL for seed germinability under low temperature using a new high-density genetic map of rice. Front Plant Sci.  https://doi.org/10.3389/fpls.2017.01223 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S et al (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6(1):4.  https://doi.org/10.1186/1939-8433-6-4 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kim KW, Chung HK, Cho GT, Ma KH, Chandrabalan D, Gwag JG et al (2007) PowerCore: a program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics 23(16):2155–2162.  https://doi.org/10.1093/bioinformatics/btm313 CrossRefPubMedGoogle Scholar
  29. Kim TS, He Q, Kim KW, Yoon MY, Ra WH, Li FP et al (2016) Genome-wide resequencing of KRICE_CORE reveals their potential for future breeding, as well as functional and evolutionary studies in the post-genomic era. BMC Genom 17(1):408.  https://doi.org/10.1186/s12864-016-2734-y CrossRefGoogle Scholar
  30. Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M (2006) An SNP caused loss of seed shattering during rice domestication. Science 312(5778):1392–1396CrossRefPubMedGoogle Scholar
  31. Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Science 311(5769):1936–1939.  https://doi.org/10.1126/science.1123604 CrossRefPubMedGoogle Scholar
  32. Li L, Liu X, Xie K, Wang Y, Liu F, Lin Q et al (2013) qLTG-9, a stable quantitative trait locus for low-temperature germination in rice (Oryza sativa L.). Theor Appl Genet 126(9):2313–2322.  https://doi.org/10.1007/s00122-013-2137-2 CrossRefPubMedGoogle Scholar
  33. Lindlöf A, Chawade A, Sikora P, Olsson O (2015) Comparative transcriptomics of Sijung and Jumli Marshi rice during early chilling stress imply multiple protective mechanisms. PloS One 10(5):e0125385.  https://doi.org/10.1371/journal.pone.0125385 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ et al (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28(18):2397–2399.  https://doi.org/10.1093/bioinformatics/bts444 CrossRefPubMedGoogle Scholar
  35. Lou Q, Chen L, Sun Z, Xing Y, Li J, Xu X et al (2007) A major QTL associated with cold tolerance at seedling stage in rice (Oryza sativa L.). Euphytica 158(1–2):87–94.  https://doi.org/10.1007/s10681-007-9431-5 CrossRefGoogle Scholar
  36. Mao D, Yu L, Chen D, Li L, Zhu Y, Xiao Y et al (2015) Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat. Theor Appl Genet 128(7):1359–1371.  https://doi.org/10.1007/s00122-015-2511-3 CrossRefPubMedGoogle Scholar
  37. Miura K, Lin SY, Yano M, Nagamine T (2001) Mapping quantitative trait loci controlling low temperature germinability in rice (Oryza sativa L.). Breed Sci 51(4):293–299.  https://doi.org/10.1270/jsbbs.51.293 CrossRefGoogle Scholar
  38. Mousavizadeh SJ, Sedaghathoor S, Rahimi A, Mohammadi H (2013) Germination parameters and peroxidase activity of lettuce seed under stationary magnetic field. Int J Biosci 3(4):199–207.  https://doi.org/10.12692/ijb/3.4.199-207 CrossRefGoogle Scholar
  39. Nguyen HN, Park IK, Yeo SM, Yun YT, Ahn SN (2012) Mapping quantitative trait loci controlling low-temperature germinability in rice. Korean J Agric Sci 39(4):477–482CrossRefGoogle Scholar
  40. Sasaki T, Kinoshita T, Takahashi ME (1974) Estimation of the number of genes in the germination ability at low temperature in rice: genetical studies in rice plant, LVII. J Fac Agric Hokkaido Univ 57(3):301–312Google Scholar
  41. Satoh T, Tezuka K, Kawamoto T, Matsumoto S, Satoh-Nagasawa N, Ueda K et al (2016) Identification of QTLs controlling low-temperature germination of the East European rice (Oryza sativa L.) variety Maratteli. Euphytica 207(2):245–254.  https://doi.org/10.1007/s10681-015-1531-z CrossRefGoogle Scholar
  42. Shakiba E, Edwards JD, Jodari F, Duke SE, Baldo AM, Korniliev P et al (2017) Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high resolution genome-wide analysis. PloS One 12(3):e0172133.  https://doi.org/10.1371/journal.pone.0172133 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Singh R, Jwa NS (2013) Understanding the responses of rice to environmental stress using proteomics. J Proteome Res 12(11):4652–4669.  https://doi.org/10.1021/pr400689j CrossRefPubMedGoogle Scholar
  44. Su CF, Wang YC, Hsieh TH, Lu CA, Tseng TH, Yu SM (2010) A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol 153(1):145–158.  https://doi.org/10.1104/pp.110.153015 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Tovuu A, Zulfugarov IS, Wu G, Kang IS, Kim C, Moon BY et al (2016) Rice mutants deficient in u-3 fatty acid desaturase (FAD8) fail to acclimate to cold temperatures. Plant Physiol Biochem 109:525–535.  https://doi.org/10.1016/j.plaphy.2016.11.001 CrossRefPubMedGoogle Scholar
  46. Wang L, Wang A, Huang X, Zhao Q, Dong G, Qian Q et al (2011) Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines. Theor Appl Genet 122(2):327–340.  https://doi.org/10.1007/s00122-010-1449-8 CrossRefPubMedGoogle Scholar
  47. Wang D, Liu J, Li C, Kang H, Wang Y, Tan X et al (2016) Genome-wide association mapping of cold tolerance genes at the seedling stage in rice. Rice 9(1):61.  https://doi.org/10.1186/s12284-016-0133-2 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Yang Z, Huang D, Tang W, Zheng Y, Liang K, Cutler AJ et al (2013) Mapping of quantitative trait loci underlying cold tolerance in rice seedlings via high-throughput sequencing of pooled extremes. Plos One 8(7):e68433.  https://doi.org/10.1371/journal.pone.0068433 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Zhang ZH, Qu XS, Wan S, Chen LH, Zhu YG (2004) Comparison of QTL controlling seedling vigour under different temperature conditions using recombinant inbred lines in rice (Oryza sativa). Ann Bot 95(3):423–429.  https://doi.org/10.1093/aob/mci039 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Zhang Q, Chen Q, Wang S, Hong Y, Wang Z (2014) Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci. Rice 7(1):24.  https://doi.org/10.1186/s12284-014-0024-3 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zhao W, Cho GT, Ma KH, Chung JW, Gwag JG, Park YJ (2010) Development of an allele-mining set in rice using a heuristic algorithm and SSR genotype data with least redundancy for the post-genomic era. Mol Breed 26(4):639–651.  https://doi.org/10.1007/s11032-010-9400-x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Plant Bioscience, College of Natural Resources and Life SciencePusan National UniversityMiryangRepublic of Korea
  2. 2.Department of Applied BioscienceKonkuk UniversitySeoulRepublic of Korea
  3. 3.Department of Agricultural ScienceKorea National Open UniversitySeoulRepublic of Korea
  4. 4.Department of Plant Resources, College of Industrial ScienceKongju National UniversityYesanRepublic of Korea
  5. 5.School of Biology and TechnologyJiangsu University of Science and TechnologyZhenjiangPeople’s Republic of China

Personalised recommendations