3 Biotech

, 7:239 | Cite as

Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review

  • Nehanjali Parmar
  • Kunwar Harendra Singh
  • Deepika Sharma
  • Lal Singh
  • Pankaj Kumar
  • J. Nanjundan
  • Yasin Jeshima Khan
  • Devendra Kumar Chauhan
  • Ajay Kumar Thakur
Review Article

Abstract

Genetic engineering technique offers myriads of applications in improvement of horticultural crops for biotic and abiotic stress tolerance, and produce quality enhancement. During last two decades, a large number of transgenic horticultural crops has been developed and more are underway. A number of genes including natural and synthetic Cry genes, protease inhibitors, trypsin inhibitors and cystatin genes have been used to incorporate insect and nematode resistance. For providing protection against fungal and bacterial diseases, various genes like chitinase, glucanase, osmotin, defensin and pathogenesis-related genes are being transferred to many horticultural crops world over. RNAi technique has been found quite successful in inducing virus resistance in horticultural crops in addition to coat protein genes. Abiotic stresses such as drought, heat and salinity adversely affect production and productivity of horticultural crops and a number of genes encoding for biosynthesis of stress protecting compounds including mannitol, glycine betaine and heat shock proteins have been employed for abiotic stress tolerance besides various transcription factors like DREB1, MAPK, WRKY, etc. Antisense gene and RNAi technologies have revolutionized the pace of improvement of horticultural crops, particularly ornamentals for color modification, increasing shelf-life and reducing post-harvest losses. Precise genome editing tools, particularly CRISPR/Cas9, have been efficiently applied in tomato, petunia, citrus, grape, potato and apple for gene mutation, repression, activation and epigenome editing. This review provides comprehensive overview to draw the attention of researchers for better understanding of genetic engineering advancements in imparting biotic and abiotic stress tolerance as well as on improving various traits related to quality, texture, plant architecture modification, increasing shelf-life, etc. in different horticultural crops.

Keywords

Genetic engineering Horticultural crops Abiotic and biotic stresses Quality improvement Genome editing 

References

  1. Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90CrossRefGoogle Scholar
  2. Aida R, Komano M, Saito M, Nakase K, Murai K (2008) Chrysanthemum flower shape modification by suppression of chrysanthemum-AGAMOUS gene. Plant Biotechnol 25:55–59CrossRefGoogle Scholar
  3. Akama K, Puchta H, Hohn B (1995) Efficient Agrobacterium-mediated transformation of Arabidopsis thaliana using the bar gene as selectable marker. Plant Cell Rep 14:450–454CrossRefGoogle Scholar
  4. Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM (2015) CRISPR/Cas9-ediated viral interference in plants. Genome Biol 16:238CrossRefGoogle Scholar
  5. Araki H, Jearnpipatkula A, Tatsumi H, Sakurai T, Ushino K, Muta T (1987) Molecular and functional organization of yeast plasmid pSR1. J Mol Biol 182:191–203CrossRefGoogle Scholar
  6. Asao H, Nishizawa Y, Arai S, Sato T, Hirai M, Yoshida K, Shinmyo A, Hibi T (1997) Enhanced resistance against a fungal pathogen Sphaerotheca humuli in transgenic strawberry expressing a rice chitinase gene. Plant Biotechnol 14:145–149CrossRefGoogle Scholar
  7. Aslam J, Khan SA, Azad MAK (2015) Agrobacterium-mediated genetic transformation of datepalm (Phoenix dactylifera L.) cultivar “Khalasah” via somatic embryogenesis. Plant Sci Today 2:93–101CrossRefGoogle Scholar
  8. Atkinson HJ, Grimwood S, Johnston K, Green J (2004) Prototype demonstration of transgenic resistance to the nematode Radopholus similis conferred on banana by a cystatin. Transgenic Res 13:135–142CrossRefGoogle Scholar
  9. Azadi P, Otang NV, Supaporn H, Khan RS, Chin DP, Nakamura I, Mii M (2011) Increased resistance to cucumber mosaic virus (CMV) in Lilium transformed with a defective CMV replicase gene. Biotechnol Lett 33:1249–1255CrossRefGoogle Scholar
  10. Ballester R, Cervera M, Pena L (2007) Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination. Plant Cell Rep 26:39–45CrossRefGoogle Scholar
  11. Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, Voytas DF (2015) Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system. Nat Plants. doi:10.1038/nplants.2015.145 Google Scholar
  12. Baranski R, Klocke E, Nothnagel T (2008) Chitinase CHIT36 from Trichoderma harzianum enhances resistance of transgenic carrot to fungal pathogens. J Phytopathol 156:13–521CrossRefGoogle Scholar
  13. Barry GF, Rogers SG, Fraley RT, Brand L (1984) Identification of a cloned cytokinin biosynthetic gene. Proc Natl Acad Sci USA 81:4776–4780CrossRefGoogle Scholar
  14. Behboodian B, Ali ZM, Ismail I, Zainal Z (2012) Postharvest analysis of lowland transgenic tomato fruits harboring hpRNAi-ACO1 construct. Sci World J 1:1–17CrossRefGoogle Scholar
  15. Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39CrossRefGoogle Scholar
  16. Bevan MW, Flavell RB, Chilton MD (1983) A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187CrossRefGoogle Scholar
  17. Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424CrossRefGoogle Scholar
  18. Bojorquez-Quintal E, Velarde-Buendıa A, Ku-Gonzalez A, Carillo-Pech M, Ortega-Camacho D, Echevarrıa-Machado I, Pottosin I, Martínez-Estévez M (2014) Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation. Front Plant Sci 5:10–3389Google Scholar
  19. Bolar JP, Norelli JL, Harman GE, Brown SK, Aldwinkle HS (2001) Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants. Transgenic Res 10:533–543CrossRefGoogle Scholar
  20. Borkowoska M, Krzymowska M, Talarczyk A, Awan MF, Yakovleva L, Kleczkowski K, Wielgat V (1998) Transgenic potato plants expressing soybean beta-1,3-endoglucanase gene exhibit an increased resistance to Phytophthora infestans. Z Naturforsch 53:1012–1016Google Scholar
  21. Borth W, Perez E, Cheah K, Chen Y, Xie WS, Gaskill D, Khalil S, Sether D, Melzer M, Wang M, Manshardt R, Gonsalves D, Hu JS (2011) Transgenic banana plants resistant to banana bunchy top virus infection. Acta Hortic. doi:10.17660/ActaHortic.2011.897.61 Google Scholar
  22. Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. Post-transcriptional control of gene expression in plants. Springer, Dordrecht, pp 191–222Google Scholar
  23. Bovy AG, Angenent GC, Dons HJM, Van-Atvorst AG (1999) Heterologous expression of the Arabidopsis etr1-1 allele inhibits the senescence of carnation flowers. Mol Breed 5:301–308CrossRefGoogle Scholar
  24. Bulle M, Yarra R, Abbagani S (2016) Enhanced salinity stress tolerance in transgenic chilli pepper (Capsicum annuum L.) plants overexpressing the wheat antiporter (TaNHX2) gene. Mol Breed 36:36CrossRefGoogle Scholar
  25. Cardi T, Stewart CN Jr (2016) Progress of targeted genome modification approaches in higher plants. Plant Cell Rep 35:1401–1416CrossRefGoogle Scholar
  26. Ceasar SA, Ignacimuthu S (2012) Genetic engineering of crop plants for fungal resistance: role of antifungal genes. Biotechnol Lett 34:995–1002CrossRefGoogle Scholar
  27. Cervera M, Ortega C, Navarro A, Navarro L, Pena L (2000) Generation of transgenic citrus plants with the tolerance-to-salinity gene HAL2 from yeast. J Hortic Sci Biotechnol 75:26–30CrossRefGoogle Scholar
  28. Chaitanya KV, Sundar D, Masilamani S, Reddy AR (2002) Variation in heat stress-induced antioxidant enzyme activities among three mulberry cultivars. Plant Growth Regul 36:175–180CrossRefGoogle Scholar
  29. Chakrabarty R, Viswakarma N, Bhat SR, Kirti PB, Singh BD, Chopra VL (2002) Agrobacterium-mediated transformation of cauliflower, optimization of protocol and development of Bt-transgenic cauliflower. J Biosci 27:495–502CrossRefGoogle Scholar
  30. Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-on A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17(7):1140–1153CrossRefGoogle Scholar
  31. Checker VG, Chhibbar AK, Khurana P (2012) Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress. Transgenic Res 21:939–957CrossRefGoogle Scholar
  32. Chen XK, Zhang JY, Zhang Z, Du XL, Du BB, Qu SC (2012) Overexpressing MhNPR1 in transgenic Fuji apples enhances resistance to apple powdery mildew. Mol Biol Rep 39:8083–8089CrossRefGoogle Scholar
  33. Chen JR, Chen YB, Ziemiańska M, Liu R, Deng ZN, Niedźwiecka-Filipiak I, Li YL, Jio JX, Xiong XY (2016) Co-expression of MtDREB1C and RcXET enhances stress tolerance of transgenic China rose (Rosa chinensis Jacq.). Plant Growth Regul 35:586–599CrossRefGoogle Scholar
  34. Cheng L, Zou Y, Ding S, Zhang J, Yu X, Cao J, Lu G (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integ Plant Biol 51:489–499CrossRefGoogle Scholar
  35. Cheng YJ, Deng XP, Kwak SS, Chen W, Eneji AE (2013) Enhanced tolerance of transgenic potato plants expressing choline oxidase in chloroplasts against water stress. Bot Stud 54:30CrossRefGoogle Scholar
  36. Cheng S, Xie X, Xu Y, Zhang C, Wang X, Zhang J, Wang U (2016) Genetic transformation of a fruit-specific, highly expressed stilbene synthase gene from Chinese wild Vitis quinquangularis. Planta 243:1041–1053CrossRefGoogle Scholar
  37. Clark DG, Loucas H, Shibuya K, Underwood B, Barry K, Jandrew J (2003) Biotechnology of floricultural crops-scientific questions and real world answers. In: Vasil IK (ed) Plant biotechnology 2002 and beyond. Kluwer Academic, Dordrecht, pp 337–342CrossRefGoogle Scholar
  38. Clarke JL, Spetz C, Haugslien S, Xing S, Dees MW, Moe R, Blystad DR (2008) Agrobacterium tumefaciens-mediated transformation of poinsettia, Euphorbia pulcherrima, with virus-derived hairpin RNA constructs confers resistance to Poinsettia mosaic virus. Plant Cell Rep 27:1027–1038CrossRefGoogle Scholar
  39. Collinge DB, Jorgensen HJ, Lund OS, Lyngkjaer MF (2010) Engineering pathogen resistance in crop plants: current trends and future prospects. Annu Rev Phytopathol 48:269–291CrossRefGoogle Scholar
  40. Dale EC, David OW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 88:558–562CrossRefGoogle Scholar
  41. Das DK, Rahman A (2010) Expression of a bacterial chitinase (ChiB) gene enhances antifungal potential in transgenic Litchi chinensis Sonn. (cv. Bedana). Curr Trends Biotechnol Pharm 41:820–833Google Scholar
  42. Das M, Chauhan H, Chhibbar A, Mohd Q, Haq R, Khurana P (2011) High-efficiency transformation and selective tolerance against biotic and abiotic stress in mulberry, Morus indica cv. K2, by constitutive and inducible expression of tobacco osmotin. Transgenic Res 20:231–246CrossRefGoogle Scholar
  43. Das MP, Rebecca LJ, Sharmila S, Banerjee A, Kumar D (2012) Identification and optimization of cultural conditions for chitinase production of Bacillus amyloliqufaciens SM3. J Chem Pharma Res 4:969–4974Google Scholar
  44. Davuluri GR, Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23:890–895CrossRefGoogle Scholar
  45. De Campos MKF, Carvalho K, Souza FS, Marur CJ, Pereira LFP, Bespalhok FJC, Vieira LGE (2011) Drought tolerance and antioxidant enzymatic activity in transgenic Swingle citrumelo plants over-accumulating proline. Environ Exp Bot 72:242–250CrossRefGoogle Scholar
  46. De Carvalho K, de Campos MKF, Domingues DS, Pereira LFP, Vieira LGE (2013) The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo. Mol Biol Rep. doi:10.1007/s11033-012-2402-5 Google Scholar
  47. De Vetten N, Wolters AM, Raemakers K, Van Der Meer I, Stege R, Heeres EA (2003) Transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442CrossRefGoogle Scholar
  48. Degenhardt J, Szankowski I (2006) Transformation of apple (Malus domestica Borkh.) using the phosphomannose isomerase gene as a selectable marker. Acta Hortic 725:811–814CrossRefGoogle Scholar
  49. Degenhardt J, Poppe A, Rosner L (2007) Alternative selection systems in apple transformation. Acta Hortic 738:287–292CrossRefGoogle Scholar
  50. Dhekney SA, Li ZT, Gray DJ (2011) Grapevines engineered to express cisgenic Vitis vinifera thaumatin-like protein exhibit fungal disease resistance. In Vitro Cell Dev Biol Plant 47:458–466CrossRefGoogle Scholar
  51. Ding LC, Hu CY, Yeh KW, Wang PJ (1998) Development of insect-resistant transgenic cauliflower plants expressing the trypsin inhibitor gene isolated from local sweet potato. Plant Cell Rep 17:854–860CrossRefGoogle Scholar
  52. Distefano G, LaMalfa S, Vitale A, Lorito M, Deng Z, Gentile A (2008) Defence-related gene expression in transgenic lemon plants producing an antimicrobial Trichoderma harzianum endochitinase during fungal infection. Transgenic Res 17:873–879CrossRefGoogle Scholar
  53. Duan Y, Zhou L, Hall DG, Li W, Doddapaneni H, Lin H (2009) Complete genome sequence of citrus huanglongbing bacterium, ‘Candidatus Liberibacter asiaticus’ obtained through metagenomics. Mol Plant Microbe Interact 22:1011–1020CrossRefGoogle Scholar
  54. Dutt M, Barthe G, Irey M, Grosser J (2015) Transgenic citrus expressing an Arabidopsis NPR1 gene exhibit enhanced resistance against Huanglongbing (HLB; Citrus greening). PLoS One 10:e0137134CrossRefGoogle Scholar
  55. Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene as a selectable marker. Proc Natl Acad Sci USA 94:2117–2121CrossRefGoogle Scholar
  56. Escobar MA, Civerolo EL, Summerfelt KR, Dandekar AM (2001) RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc Natl Acad Sci USA 98:13437–13442CrossRefGoogle Scholar
  57. Fagoaga C, Rodrigo I, Conejero V, Hinarejos C, Tuset JJ, Arnau J, Pina JA, Navarro L, Pena L (2001) Increased tolerance to Phytophthora citrophthora in transgenic orange plants constitutively expressing a tomato pathogenesis related protein PR-5. Mol Breed 7:175–185CrossRefGoogle Scholar
  58. Fan W, Zhang M, Zhang H, Zhang P (2012) Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS One 7:e37344CrossRefGoogle Scholar
  59. Fan Q, Song A, Jiang Zhang T, Sun H, Wang Y (2016) CmWRKY1 enhances the dehydration tolerance of chrysanthemum through the regulation of ABA-associated genes. PLoS One 11:e0150572CrossRefGoogle Scholar
  60. Finstad K, Martin RR (1995) Transformation of strawberry for virus resistance. Acta Hortic 385:6–90Google Scholar
  61. Fischhoff DA, Bowdish KS, Perlak FJ, Marrone PG, McCormick SM, Niedermeyer JG, Dean DA, Kusano-Kretzmer K, Mayer EJ, Rochester DE, Rogers SG, Fraley RT (1987) Insect tolerant tomato plants. BioTechnol 5:807–813Google Scholar
  62. Flachowsky H, Szankowski I, Fischer TC (2010) Transgenic apple plants overexpressing the Lc gene of maize show an altered growth habit and increased resistance to apple scab and fire blight. Planta 231:623–635CrossRefGoogle Scholar
  63. Galambos A, Zok A, Kuczmog A, Olah R, Putnoky P, Ream W, Szegedi E (2013) Silencing Agrobacterium oncogenes in transgenic grapevine results in strain-specific crown gall resistance. Plant Cell Rep 32:1751–1757CrossRefGoogle Scholar
  64. Gangadhar BH, Sajeesh K, Venkatesh J, Baskar V, Abhinandan K, Yu JW, Prasad R, Mishra RK (2016) Enhanced tolerance of transgenic potato plants over-expressing non-specific lipid transfer protein-1 (StnsLTP1) against multiple abiotic stresses. Front Plant Sci 7:1228CrossRefGoogle Scholar
  65. Gao H, Song A, Zhu X, Chen F, Jiang J (2012) The heterologous expression in Arabidopsis of a highly tolerant to a new CMV pathotype. Plant Cell Rep 28:223–232Google Scholar
  66. Gessler C, Patocchi A (2007) Recombinant DNA technology in apple. Adv Biochem Engin/Biotechnol 107:13–132CrossRefGoogle Scholar
  67. Ghag SB, Shekhawat UKS, Ganapathi TR (2012) Petunia floral defensins with unique prodomains as novel candidates for development of Fusarium wilt resistance in transgenic banana plants. PLoS One 7:39557CrossRefGoogle Scholar
  68. Girhepuje PV, Shinde GV (2011) Transgenic tomato plants expressing a wheat endochitinase gene demonstrate enhanced resistance to Fusarium oxysporum f. sp. Lycopersici. Plant Cell Tiss Organ Cult 105:243–251CrossRefGoogle Scholar
  69. Gleave AP, Mitra DS, Mudge SR, Morris BA (1999) Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol Biol 40:223–235CrossRefGoogle Scholar
  70. Graham J, Gordon SC, Smith K, McNcol RJ, McNcol JW (2002) The effect of the cowpea trypsin inhibitor in strawberry on damage by vine weevil under field conditions. J Hortic Sci Biotechnol 77:33–40CrossRefGoogle Scholar
  71. Han BH, Suh EJ, Lee SY, Shin HK, Lim YP (2007) Selection of nonbranching lines induced by introducing Ls-like cDNA into Chrysanthemum (Dendranthema × grandiflorum (Ramat.) Kitamura) Shuho-no-chikara. Sci Hortic 115:70–75CrossRefGoogle Scholar
  72. Han JS, Park LI, Jeon SM, Park S, Naing AH, Kim CK (2015) Assessments of salt tolerance in a bottle gourd line expressing the Arabidopsis H+-pyrophosphatase AVP1 gene and in a watermelon plant grafted onto a transgenic bottle gourd rootstock. Plant Breed 134:233–238CrossRefGoogle Scholar
  73. Hare PD, Chua NH (2002) Excision of selectable marker genes from transgenic plants. Nat Biotechnol 20:575–580CrossRefGoogle Scholar
  74. Hazarika P, Rajam MV (2011) Biotic and abiotic stress tolerance in transgenic tomatoes by constitutive expression of S-adenosylmethionine decarboxylase gene. Physiol Mol Biol Plants 17:115–128CrossRefGoogle Scholar
  75. He H, Ke H, Keting H, Qiaoyan X, Silan D (2013) Flower colour modification of chrysanthemum by suppression of F3′H and overexpression of the exogenous Senecio cruentus F3′5′H gene. PLoS One 8(11):e74395CrossRefGoogle Scholar
  76. Holton TA, Brugliera F, Tanaka Y (1993) Cloning and expression of flavonol synthase from Petunia hybrida. Plant J 4:1003–1010CrossRefGoogle Scholar
  77. Husaini AM, Abdin MZ (2008) Overexpression of tobacco osmotin gene leads to salt stress tolerance in strawberry (Fragaria × ananassa Duch.) plants. Indian J Biotech 7:465–471Google Scholar
  78. ISAAA (2017). http://www.isaaa.org. Accessed 25 May 2017
  79. Islam A (2006) Fungus resistant transgenic plants: strategies, progress and lessons learnt. Plant Tiss Cult Biotechnol 16:117–138Google Scholar
  80. James C, Krattiger AF (1996) Global review of the field testing and commercialization of transgenic plants: 1986 to 1995. ISAAA, Briefs, p 1Google Scholar
  81. Jiang B, Miao H, Chen S, Zhang S, Chen F, Fang W (2010) The lateral suppressor-like gene, DgLsL, alternated the axillary branching in transgenic chrysanthemum (Chrysanthemum × morifolium) by modulating IAA and GA content. Plant Mol Biol Rep 28:144–151CrossRefGoogle Scholar
  82. Jin WM, Dong J, Hu YL, Lin ZP, Xu XF, Han ZH (2009) Improved cold-resistant performance in transgenic grape (Vitis vinifera L.) overexpressing cold-inducible transcription factors AtDREB1b. Hortic Sci 44:35–39Google Scholar
  83. Jiwan D, Roalson EH, Main D, Dhingra A (2012) Antisense expression of peach mildew resistance locus O (PpMlo1) gene confers cross-species resistance to powdery mildew in Fragaria × ananassa. Transgenic Res 22:1119–1131CrossRefGoogle Scholar
  84. Jones HD (2015) Regulatory uncertainty over genome editing. Nat. Plants. doi:10.1038/nplants.2014.11 Google Scholar
  85. Joshi SG, Soriano JM, Kortstee A (2009) Development of cisgenic apples with durable resistance to apple scab. Acta Hortic 839:403–406CrossRefGoogle Scholar
  86. Josine T, Ji J, Wang G, Zhao Q, Yang HL, Wang YR, Wu WD (2015) AtDREB2A-CA gene over-expression in Rosa Chinensis Jacq. affect leaf ultrastructure response to salt stress. Int J Agri Crop Sci 8:463–476Google Scholar
  87. Kathryn KK, Han BH (2008) Biolistic-mediated transformation of Lilium longiflorum cv. Nellie White. Hortic Sci 43(6):1864–1869Google Scholar
  88. Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48:1589–1600CrossRefGoogle Scholar
  89. Kaur P, Samuel DVK, Bansal KC (2010) Fruit-specific over-expression of LeEXP1 gene in tomato alters fruit texture. J Plant Biochem Biotechnol 19(2):177–183CrossRefGoogle Scholar
  90. Keen NT, Yoshikawa M (1993) β-1,3-endoglucanase from soybean releases elicitor-active carbohydrates from fungus cell walls. Plant Physiol 71:460–465CrossRefGoogle Scholar
  91. Khan RS, Sjahril R, Nakamura I, Mii M (2008) Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications. Plant Biotechnol Rep 2:13–20CrossRefGoogle Scholar
  92. Khan RS, Nakamura I, Mii M (2010) Production and selection of marker-free transgenic plants of Petunia hybrida using site specific recombination. Biol Plant 54:265–271CrossRefGoogle Scholar
  93. Khan H, Siddique I, Anis M, Khan PR (2011a) In vitro organogenesis from internode derived callus cultures of Capsicum annuum L. J Plant Biochem Biotechnol 20:84–89CrossRefGoogle Scholar
  94. Khan RS, Nakamura I, Mii M (2011b) Development of disease-resistant marker-free tomato by R/RS site-specific recombination. Plant Cell Rep 30:1041–1053CrossRefGoogle Scholar
  95. Khare N, Goyary D, Singh NK, Shah P, Rathore M, Anandhan S (2010) Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell Tiss Organ Cult 2:267–277CrossRefGoogle Scholar
  96. Khodakovskaya M, Vankova R, Malbeck J, Li A, Li Y, McAvoy R (2009) Enhancement of flowering and branching phenotype in chrysanthemum by expression of ipt under the control of a 0.821 kb fragment of the LEACO1 gene promoter. Plant Cell Rep 28:1351–1362CrossRefGoogle Scholar
  97. Khurana P, Vishnudasan D, Chhibbar AK (2008) Genetic approaches towards overcoming water deficit in plants special emphasis on LEAs. Physiol Mol Biol Plants 14:277–298CrossRefGoogle Scholar
  98. Kishi-Kaboshi M, Aida R, Sasaki K (2017) Generation of gene-edited Chrysanthemum morifolium using multicopy transgenes as targets and markers. Plant Cell Physiol 58(2):216–226Google Scholar
  99. Ko M, Cho JH, Seo HH, Lee HH, Kang HY, Nguyen TS (2016) Constitutive expression of a fungus-inducible carboxylesterase improves disease resistance in transgenic pepper plants. Planta 244:379–392CrossRefGoogle Scholar
  100. Kothari SL, Joshi A, Kachhwaha S, Ochoa-Alejo N (2010) Chilli peppers—a review on tissue culture and transgenesis. Biotechnol Adv 28:35–48CrossRefGoogle Scholar
  101. Kumar P, Srivastava DK (2015) High frequency organogenesis in hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica), an important vegetable crop. Physiol Mol Biol Plants 21(2):279–285CrossRefGoogle Scholar
  102. Kumar PA, Mandaokar A, Sreenivasu K, Chakrabarti SK, Bisaria S, Sharma SR (1998) Insect-resistant transgenic brinjal plants. Mol Breed 4:3–37CrossRefGoogle Scholar
  103. Le HG, Farine S, Kieffer-Mazet F, Miclot AS, Heitz T, Mestre P, Bertsch C, Chong J (2011) Vitis vinifera VvNPR1,1 is the functional ortholog of AtNPR1 and its overexpression in grapevine triggers constitutive activation of PR genes and enhanced resistance to powdery mildew. Planta 234(2):405–417CrossRefGoogle Scholar
  104. Lee YH, Jung M, Shin SH, Lee JH, Choi SH, Her NH (2009) Transgenic peppers that are highly tolerant to a new CMV pathotype. Plant Cell Rep 28:223–232CrossRefGoogle Scholar
  105. Li Y, Zhang Y, Feng F, Liang D, Cheng L, Ma F, Shi S (2010) Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M26 and its influence on salt tolerance. Plant Cell Tiss Organ Cult 102:337–345CrossRefGoogle Scholar
  106. Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691CrossRefGoogle Scholar
  107. Li P, Song A, Gao C, Jiang J, Chen S, Fang W (2015) The over-expression of a chrysanthemum WRKY transcription factor enhances aphid resistance. Plant Physiol Biochem 95:26–34CrossRefGoogle Scholar
  108. Lilley CJ, Urwin PE, Johnston KA, Atkinson HJ (2004) Preferential expression of a plant cystatin at nematode feeding sites confers resistance to Meloidogyne and Globodera spp. Plant Biotechnol J 2:3–12CrossRefGoogle Scholar
  109. Lim MY, Jeong BR, Jung M, Harn CH (2016) Transgenic tomato plants expressing strawberry D-galacturonic acid reductase gene display enhanced tolerance to abiotic stresses. Plant Biotechnol Rep 10:105–116CrossRefGoogle Scholar
  110. Lin WC, Lu CF, Wu JW, Cheng ML, Lin YM, Yang NS (2004) Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res 13:67–581CrossRefGoogle Scholar
  111. Lindow S, Newman K, Chatterjee S, Baccari C, Lavarone AT, Ionescu M (2014) Production of Xylella fastidiosa diffusible signal factor in transgenic grape causes pathogen confusion and reduction in severity of pierce’s disease. Mol Plant Microbe Interact 27:244–254CrossRefGoogle Scholar
  112. Lorito M, Woo SL, Fernandez IG, Colucci G, Harman GE, Pintor-Toro JA, Filipone E, Muccifora S, Lawrence CB, Zoina A, Tuzun S, Scala F (1998) Genes from mycoparasitic fungi as source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci USA 95:7860–7865CrossRefGoogle Scholar
  113. Lu CY, Chandler SF, Mason JG, Brugliera F (2003) Florigene flowers: from laboratory to market. In: Vasil IK (ed) Plant biotechnology 2002 and beyond. Kluwer Academic, Dordrecht, pp 333–336CrossRefGoogle Scholar
  114. Lurquin P (2002) High tech harvest: understanding genetically modified food plants. Westview, CambridgeGoogle Scholar
  115. Malnoy M, Aldwinckle HS (2007) Development of fire blight resistance by recombinant DNA technology. Plant Breed Rev 29:315–358CrossRefGoogle Scholar
  116. Malnoy M, Jin Q, Borejsza-Wysocka EE, He SY, Aldwinckle HS (2007) Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus × domestica. Mol Plant Microbe Interact 20:1568–1580CrossRefGoogle Scholar
  117. Malnoy M, Xu M, Borejsza-Wysocka E, Korban SS, Aldwinckle HS (2008) Two receptor like genes, Vf1 and Vf2, confer resistance to the fungal pathogen Venturia inaequalis inciting apple scab disease. Mol Plant Microbe Interact 21:448–458CrossRefGoogle Scholar
  118. Malnoy M, Viola R, Jung MH, Koo OJ, Kim S, Kim JS, Velasco R, Nagamangala KC (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904CrossRefGoogle Scholar
  119. Markwick NP, Docherty LC, Phung MM (2003) Transgenic tobacco and apple plants expressing biotin-binding proteins are resistant to two cosmopolitan insect pests, potato tuber moth and light brown apple moth, respectively. Transgenic Res 12:671–681CrossRefGoogle Scholar
  120. Martinelli A, Gaiani A, Cella R (1997) Agrobacterium-mediated transformation of strawberry cultivar Marmolada onebar. Acta Hortic 439:169–173CrossRefGoogle Scholar
  121. Mercado JA, Martín-Pizarro C, Pascual L, Quesada MA, Pliego-Alfaro F, de los Santos B, Romero F, Gálvez J, Rey M, de la Vin˜a G, Llobell A, Yubero-Serrano E-M, Mun˜oz-Blanco J, Caballero JL (2007) Evaluation of tolerance to Colletotrichum acutatum in strawberry plants transformed with Trichoderma-derived genes. Acta Hortic 738:383–388CrossRefGoogle Scholar
  122. Mercado JA, Barcelo M, Pliego C, Rey M, Caballero JL, Munoz-Blanco J, Ruano-Rosa D, Lopez-Herrera C, Santos B, Romero-Munoz F, Pliego-Alfaro F (2015) Expression of the β-1,3-glucanase gene bgn13,1 from Trichoderma harzianum in strawberry increases tolerance to crown rot diseases but interferes with plant growth. Transgenic Res 24:979–989CrossRefGoogle Scholar
  123. Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330:677–678CrossRefGoogle Scholar
  124. Minlong C, Takayanagi K, Kamada H, Nishimura S, Handa T (2000) Transformation of Antirrhinum majus L. by a rol-type multi-auto-transformation (MAT) vector system. Plant Sci 159:273–280CrossRefGoogle Scholar
  125. Mishra M, Jalil SU, Mishra RK, Kumari S, Pandey BK (2016) In vitro screening of guava plantlets transformed with endochitinase gene against Fusarium oxysporum f. sp. psidii. Czech J Genet Plant Breed 52:6–13CrossRefGoogle Scholar
  126. Missiou A, Kalantidis K, Boutla A, Tzortzakaki S, Tabler M, Tsagris M (2004) Generation of transgenic potato plants highly resistant to potato virus Y (PVY) through RNA silencing. Mol Breeding 14:185–197CrossRefGoogle Scholar
  127. Mondal SN, Dutt M, Grosser JW, Dewdney MM (2012) Transgenic citrus expressing the antimicrobial gene Attacin E (attE) reduces the susceptibility of ‘Duncan’ grapefruit to the citrus scab caused by Elsinoe fawcettii. Eur J Plant Pathol 133:391–404CrossRefGoogle Scholar
  128. Mora AA, Earle ED (2001) Resistance to Alternaria brassicicola in transgenic broccoli expressing Trichoderma harzianum endochitinase gene. Mol Breed 8:1–9CrossRefGoogle Scholar
  129. Moravcikova J, Matusikova I, Libantova J, Bauer M, Mlynarova L (2004) Expression of a cucumber class III chitinase and Nicotiana plumbaginifolia class I glucanase genes in transgenic potato plants. Plant Cell Tiss Organ Cult 79:161–168CrossRefGoogle Scholar
  130. Naing AH, Ai TN, Jeon SM, Lim SH, Kim CK (2016) An efficient protocol for Agrobacterium-mediated genetic transformation of recalcitrant chrysanthemum cultivar Shinma. Acta Physiol Plant 38:38CrossRefGoogle Scholar
  131. Najar AG, Anwar A, Masoodi L, Khar MS (2011) Evaluation of native biocontrol agents against Fusarium solani f. sp. melongenae causing wilt disease of brinjal in Kashmir. J Phytol 3:31–34Google Scholar
  132. Nakamura Y, Sawada H, Kobayashi S, Nakajima I, Yoshikawa M (1999) Expression of soybean β-1,3-glucanase cDNA and effect on disease tolerance in kiwifruit plants. Plant Cell Rep 18:527–532CrossRefGoogle Scholar
  133. Nambeesan S, Datsenka T, Ferruzzi MG, Malladi A, Mattoo AK, Handa AK (2010) Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato. Plant J 63:836–847CrossRefGoogle Scholar
  134. Namukwaya B, Tripathi L, Tripathi JN, Arinaitwe G, Mukasa SB, Tushemereirwe WK (2012) Transgenic banana expressing Pflp gene confers enhanced resistance to Xanthomonas wilt disease. Transgenic Res 21:855–865CrossRefGoogle Scholar
  135. Narendran M, Deole SG, Harkude S, Shirale D, Nanote A, Bihani P, Parimi S, Char BR, Zehr UB (2013) Efficient genetic transformation of okra (Abelmoschus esculentus (L.) Moench) and generation of insect-resistant transgenic plants expressing the cry1Ac gene. Plant Cell Rep 32:1191–1198CrossRefGoogle Scholar
  136. Nishitani C, Hirai N, Komori S, Wada M, Okada K, Osakabe K et al (2016) Efficient genome editing in apple using a CRISPR/Cas9 system. Sci Rep 6:31481CrossRefGoogle Scholar
  137. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol 49:249–279CrossRefGoogle Scholar
  138. Pandolfini T, Molesini B, Avesani L, Spena A, Polverari A (2003) Expression of self-complementary hairpin RNA under the control of the rolC promoter confers systemic disease resistance to plum pox virus without preventing local infection. BMC Biotech 3:7CrossRefGoogle Scholar
  139. Papolu PK, Dutta TK, Tyagi N, Urwin PE, Lilley CJ, Rao U (2016) Expression of a cystatin transgene in eggplant provides resistance to root-knot nematode, Meloidogyne incognita. Front Plant Sci 7:1122CrossRefGoogle Scholar
  140. Park S, Cheng NH, Pittman JK, Yoo KS, Park J, Smith RH (2005) Increased calcium levels and prolonged shelf life in tomatoes expressing Arabidopsis H+/Ca2+. Plant Physiol 139:1194–1206CrossRefGoogle Scholar
  141. Parmar N, Kamlesh K, Thakur AK (2012) In vitro organogenesis from cotyledon derived callus cultures of Punica granatum L. cv. Kandhari Kabuli. Natl Acad Sci Lett 35:215–220CrossRefGoogle Scholar
  142. Parmar N, Kanwar K, Thakur AK (2013) High efficiency plant regeneration via direct organogenesis in Punica granatum L. cv. Kandhari Kabuli from hypocotyl explants. Proc Natl Acad Sci India Sect-B Biol Sci 83:569–574CrossRefGoogle Scholar
  143. Parmar N, Kanwar K, Thakur AK (2015) High efficiency plant regeneration from cotyledon explants of pomegranate (Punica granatum L.) cv. Kandhari Kabuli. Vegetos 28:160–165Google Scholar
  144. Pasquali G, Biricolti S, Locatelli F, Baldoni E, Mattana M (2008) Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Rep 27:1677–1686CrossRefGoogle Scholar
  145. Paul A, Sharma SR, Sresty TVS, Devi S, Bala S, Kumar PS, Saradhi PP, Frutos R, Altosaar I, Kumar PA (2005) Transgenic cabbage (Brassica oleracea var. capitata) resistant to Diamondback moth (Plutella xylostella). Indian J Biotech 4:72–77Google Scholar
  146. Pessina S, Lenzi L, Perazzolli M, Campa M, DallaCosta L, Urso S, Vale G, Salamini F, Velasco R, Malnoy M (2016) Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine. Hortic Res 3:16016CrossRefGoogle Scholar
  147. Petty LM, Harberd NP, Carre IA, Thomas B, Jackson SD (2003) Expression of the Arabidopsis gai gene under its own promoter causes a reduction in plant height in chrysanthemum by attenuation of the gibberellin response. Plant Sci 164:75–182CrossRefGoogle Scholar
  148. Praveen S, Ramesh SV, Mishra AK, Koundal V, Palukaitis P (2010) Silencing potential of viral derived RNAi constructs in tomato leaf curl virus-AC4 gene suppression in tomato. Transgenic Res 19:45–55CrossRefGoogle Scholar
  149. Puchta H (2000) Removing selectable marker genes: taking the shortcut. Trends Plant Sci 5:273–274CrossRefGoogle Scholar
  150. Punja ZK, Raharjo V (1996) Response of transgenic cucumber and carrot plants expressing different chitinase enzymes to inoculation with pathogens. Plant Dis 80:999–1005CrossRefGoogle Scholar
  151. Qu SC, Dong L, Zhang Z (2009) Research advances of resistant genes in apple. J Agric Sci Technol 11:36–41Google Scholar
  152. Rai MK, Kalia RK, Singh R, Gangola MP, Dhawan AK (2011) Developing stress tolerant plants through in vitro selection—an overview of the recent progress. Environ Exp Bot 71:89–98CrossRefGoogle Scholar
  153. Ren C, Liu X, Zhang Z, Wang Y, Duan W, Li S, Liang Z (2016) CRISPR/Cas9—mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci Rep 6:32289CrossRefGoogle Scholar
  154. Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023CrossRefGoogle Scholar
  155. Rivera-Dominguez M, Astorga-Cienfuegos KR, Vallejo-Cohen S, Vargas-Arispuro I, Sanchez- Sanchez E (2011) Transgenic mango embryos (Mangifera indica) cv. ‘Ataulfo’ with the defensin J1 gene. Revista Mexicana de Fitopathol 29:78–80Google Scholar
  156. Robson PRH, McCormac AC, Irvine AS, Smith H (1996) Genetic engineering of harvest index in tobacco through overexpression of a phytochrome gene. Nat Biotechnol 14:995–998CrossRefGoogle Scholar
  157. Roderick H, Tripathi L, Babirye A, Wang D, Tripathi J, Urwin PE (2012) Generation of transgenic plantain (Musa spp.) with resistance to plant pathogenic nematodes. Mol Plant Pathol 13:842–851CrossRefGoogle Scholar
  158. Rustaee M, Nazeri S, Ghadimzadeh M, Malboobi MA (2007) Optimizing in vitro regeneration from Iranian native dwarf rootstock of apple (Malus domestica Borkh). Int J Agric Biol 9:775–778Google Scholar
  159. Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819CrossRefGoogle Scholar
  160. Sajeevan RS, Nataraja KN, Shivashankara KS, Pallavi N, Gurumurthy DS, Shivanna MB (2017) Expression of Arabidopsis SHN1 in Indian mulberry (Morus indica L.) increases leaf surface wax content and reduces post-harvest water loss. Front Plant Sci 8:418CrossRefGoogle Scholar
  161. Savin KW, Baudinette SC, Graham MW, Michael MZ, Nugent GD, Lu C, Chandler SF, Cornish EC (1995) Antisense ACC oxidase RNA delays carnation petal senescence. Hortic Sci 30:970–972Google Scholar
  162. Schestibratov KA, Dolgov SV (2005) Transgenic strawberry plants expressing a thaumatin II gene demonstrate enhanced resistance to Botrytis cinerea. Sci Hortic 106:177–189CrossRefGoogle Scholar
  163. Shah DM, Horsch RB, Klee HJ, Kishore G, Winter JA, Tumer NE, Hironaka CM, Sanders PR, Gasser CS, Aykent S, Siegel NR, Rogers SG, Fraley RT (1986) Engineering herbicide tolerance in transgenic plants. Science 233:478–481CrossRefGoogle Scholar
  164. Sharma S, Thakur AK, Srivastava DK (2006) Plant regeneration and Agrobacterium-mediated gene transfer in Bell pepper (Capsicum annuum L.). Crop Improv 33:1–8Google Scholar
  165. Shekhawat UKS, Ganapathi TR (2013) MusaWRKY71 overexpression in banana plants leads to altered abiotic and biotic stress responses. PLoS One 8:e75506CrossRefGoogle Scholar
  166. Shekhawat UKS, Ganapathi TR, Srinivas L (2011) MusaDHN-1, a novel multiple stress-inducible SK3-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. Planta 234:915–932CrossRefGoogle Scholar
  167. Shekhawat UKS, Ganapathi TR, Hadapad AB (2012) Transgenic banana plants expressing small interfering RNAs targeted against viral replication initiation gene display high-level resistance to banana bunchy top virus infection. J Gen Virol 93:1804–1813CrossRefGoogle Scholar
  168. Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881CrossRefGoogle Scholar
  169. Shin R, Park JM, An JM, Paek KH (2002) Ectopic expression of Tsi1 in transgenic hot pepper plants enhances host resistance to viral, bacterial and oomycete pathogens. Mol Plant Microb Interact 15:983–989CrossRefGoogle Scholar
  170. Shingles J, Lilley CJ, Atkinson HJ, Urwin PE (2007) Meloidogyne incognita: molecular and biochemical characterization of acathepsin L cysteine proteinase and the effect on parasitism following RNAi. Exp Parasitol 115:114–120CrossRefGoogle Scholar
  171. Singh S, Rajam MV (2010) Highly efficient and rapid plant regeneration in Citrus sinensis. J Plant Biochem Biotechnol 19:195–202CrossRefGoogle Scholar
  172. Singh D, Ambroise A, Haicour R, Sihachakr D, Rajam MV (2014) Increased resistance to fungal wilts in transgenic eggplant expressing alfalfa glucanase gene. Physiol Mol Biol Plants 20:143–150CrossRefGoogle Scholar
  173. Smith CJS, Watson CF, Ray J, Bird CR, Morris PC, Schuch W, Grierson D (1988) Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature 334:724–726CrossRefGoogle Scholar
  174. Song A, Zhu X, Chen F, Gao H, Jiang J, Chen S (2014) A chrysanthemum heat shock protein confers tolerance to abiotic stress. Int J Mol Sci 15:5063–5078CrossRefGoogle Scholar
  175. Song G, Jia M, Chen K, Kong X, Khattak B, Xie C, Li A, Mao L (2016) CRISPR/Cas9: a powerful tool for crop genome editing. Crop J 4:75–82CrossRefGoogle Scholar
  176. Sreedharan S, Shekhawat UKS, Ganapathi TR (2012) MusaSAP1, a A20/AN1 zinc finger gene from banana functions as a positive regulator in different stress responses. Plant Mol Biol 80:503–517CrossRefGoogle Scholar
  177. Sripaoraya S, Keawsompong S, Insupa P, Power JB, Davey MR, Srinives P (2006) Genetically manipulated pineapple: transgene stability, gene expression and herbicide tolerance under field conditions. Plant Breed 125:411–413CrossRefGoogle Scholar
  178. Stewart RJ, Sawyer BJB, Bucheli CS, Robinson SP (2001) Polyphenol oxidase is induced by chilling and wounding in pineapple. Aus J Plant Physiol 28:181–191Google Scholar
  179. Subramanyam K, Sailaja KV, Subramanyam K, Rao DM, Lakshmidevi K (2011) Ectopic expression of an osmotin gene leads to enhanced salt tolerance in transgenic chilli pepper (Capsicum annum L.). Plant Cell Tiss Organ Cult 105:181–192CrossRefGoogle Scholar
  180. Sugita K, Matsunaga E, Ebinuma H (1999) Effective selection system for generating marker-free transgenic plants independent of sexual crossing. Plant Cell Rep 18:941–947CrossRefGoogle Scholar
  181. Sun S, Zhou L, Lu M, Cai M, Jiang XW, Zhang QX (2009) Marker-free transgenic chrysanthemum obtained by Agrobacterium-mediated transformation with twin T-DNA binary vectors. Plant Mol Biol Rep 27:102–108CrossRefGoogle Scholar
  182. Suzuki JY, Tripathi S, Fermin G, Hou S, Saw J, Ackerman CM, Yu Q, Schatz MC, Pitz KY, Yepes M, Fitch MMM, Manshardt RM, Slightom JL, Ferreira SA, Salzberg S, Alam M, Ming R, Moore PH, Gonsalves D (2008) Efforts to deregulate Rainbow papaya in Japan: molecular characterization of transgene and vector inserts. In: Second international symposium on papaya, 9–12 December 2008, Madurai, India, p 56Google Scholar
  183. Szankowski I, Waidmann S, Degenhardt J, Patocchi A, Paris R, Silfverberg-Dilworth E, Broggini G, Gessler C (2009) Highly scab-resistant transgenic apple lines achieved by introgression of HcrVf2 controlled by different native promoter lengths. Tree Genet Genomes 5:349–358CrossRefGoogle Scholar
  184. Tanaka Y, Katsumoto Y, Brugliera F, Mason J (2005) Genetic engineering in floriculture. Plant Cell Tiss Org Cult 80:1–24CrossRefGoogle Scholar
  185. Tang L, Kwon SY, Kim SH, Kim JS, Choi JS, Cho KY, Sung CK, Kwak SS, Lee HS (2006) Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature. Plant Cell Rep 25:1380–1386CrossRefGoogle Scholar
  186. Tao R, Dandekar AM, Uratsu SL, Vail PV, Tebbets JL (1997) Engineering genetic resistance against insects in Japanese Persimmon using the cryI(A)c gene of Bacillus thuringiensis. J Am Soc Hortic Sci 122:764–771Google Scholar
  187. Thirukkumaran G, Khan RS, Chin DP, Nakamura I, Mii M (2009) Isopentenyl transferase gene expression offers the positive selection of marker-free transgenic plant of Kalanchoe blossfeldiana. Plant Cell Tiss Organ Cult 97:237–242CrossRefGoogle Scholar
  188. Tian N, Wang J, Xu ZQ (2011) Overexpression of Na+/H+ antiporter gene AtNHX1 from Arabidopsis thaliana improves the salt tolerance of kiwifruit (Actinidia deliciosa). South Afr J Bot 77:160–169CrossRefGoogle Scholar
  189. Tian S, Jiang L, Gao Q, Zhang J, Zong M, Zhang H, Ren Y, Guo S, Gong G, Liu F, Xu Y (2017) Efficient CRISPR/Cas9-based gene knockout in watermelon. Plant Cell Rep 36:399–406CrossRefGoogle Scholar
  190. Tripathi L, Mwangi M, Abele S, Aritua V, Tushemereirwe WK, Bandyopadhyay R (2009) Xanthomonas wilt: a threat to banana production in east and central Africa. Plant Dis 93:440–451CrossRefGoogle Scholar
  191. Tsai-Hung H, Jent-turn L, Yee-yung C, Ming-Tsair C (2002) Heterology expression of the Arabidopsis C-Repeat/Dehydration Response Element Binding Factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 130:618–626CrossRefGoogle Scholar
  192. Ueta R, Abe C, Watanabe T, Sugano SS, Ishihara R, Ezura H, Osakabe Y, Osakabe K (2017) Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci Rep 7:507CrossRefGoogle Scholar
  193. Valizadeh M, Deraison C, Kazemitabar SK, Rahbe Y, Jongsma MA (2013) Aphid resistance in florist’s chrysanthemum (Chrysanthemum morifolium Ramat.) induced by sea anemone equistatin overexpression. Afr J Biotechnol 12:6922–6930Google Scholar
  194. van der Krol AR, Lenting PE, Veenstra J, van der Meer IM, Koes RE, Gerats AGM, Mol JNM, Stuitje AR (1988) An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333:866–869CrossRefGoogle Scholar
  195. Vanblaere T, Szankowski I, Schaart J, Schouten H, Flachowsky H, Broggini GAL, Gessler C (2011) The development of a cisgenic apple plant. J Biotechnol 154:304–311CrossRefGoogle Scholar
  196. Vasudevan A, Selvaraj N, Ganapathi A, Choi CW (2007) Agrobacterium-mediated genetic transformation in cucumber (Cucumis sativus L.). Am. J Biotechnol Biochem 3:24–32CrossRefGoogle Scholar
  197. Vellice GR, Ricci JCD, Hernandez L, Castagnaro AP (2006) Enhanced resistance to Botrytis cinerea mediated by the transgenic expression of the chitinase gene ch5B in strawberry. Transgenic Res 15:57–68CrossRefGoogle Scholar
  198. Vieira P, Wantoch S, Lilley JL, Chitwood DJ, Atkinson HJ, Kamo K (2015) Expression of a cystatin transgene can confer resistance to root lesion nematodes in Lilium longiflorum cv. ‘Nellie White’. Transgenic Res 24:421–432CrossRefGoogle Scholar
  199. Wally O, Jayaraj J, Punja ZK (2009) Broad-spectrum disease resistance to necrotrophic and biotrophic pathogens in transgenic carrots (Daucus carota L.) expressing an Arabidopsis NPR1 gene. Planta 231:131–141CrossRefGoogle Scholar
  200. Wang Y, Wisniewsky M, Meilan R, Cui M, Webb R, Fuchigamy L (2005) Over-expression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. J Am Soc Hortic Sci 130:167–173Google Scholar
  201. Wang Y, Wisniewski M, Meilan R, Cu M, Fuchigami L (2006) Transgenic tomato (Lycopersicon esculentum) overexpressing cAPX exhibits enhanced tolerance to UV-B and heat stress. J Appl Hortic 8:87–90Google Scholar
  202. Wang RK, Li LL, Cao ZH, Zhao Q, Li M, Zhang LY, Hao YJ (2012) Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant Mol Biol. doi:10.1007/s11103-012-9899-9 Google Scholar
  203. Wen XP, Ban Y, Inoue H, Matsuda N, Moriguchi T (2010) Spermidine levels are implicated in heavy metal tolerance in a spermidine synthase overexpressing transgenic European pear by exerting antioxidant activities. Transgenic Res 19:91–103CrossRefGoogle Scholar
  204. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338CrossRefGoogle Scholar
  205. Wisniewski M, Fuchigami L, Wang Y, Srinivasan C, Norilli J (2002) Overexpression of a cytosolic ascorbate peroxidase gene in apple improves resistance to heat stress. In: XXXVI International Horticultural Congress and Exhibition, p 147 (Abstr.)Google Scholar
  206. Xiangdong WEI, Congyul LAN, Zhijing LU, Changming YE (2007) Analysis on virus resistance and fruit quality for T4 generation of transgenic papaya. Front Biol China 2:284–290Google Scholar
  207. Yamamoto T, Iketani H, Ieki H, Nishizawa Y, Notsuka K, Hibi T, Hayashi T, Matsuta N (2000) Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep 19:639–646CrossRefGoogle Scholar
  208. Yarra R, He SJ, Abbagani S, Ma B, Bulle M, Zhang WK (2012) Overexpression of a wheat Na+/H+ antiporter gene (TaNHX2) enhances tolerance to salt stress in transgenic tomato plants (Solanum lycopersicum L.). Plant Cell Tiss Organ Cult 111(1):49–57CrossRefGoogle Scholar
  209. Yoshikawa M, Tsuda M, Takeuchi Y (1993) Resistance to fungal disease in transgenic tobacco plants expressing the phytoalexin elicitor-releasing factor, β-1,3-glucanase from soybean. Naturwissenschaften 80:417–420CrossRefGoogle Scholar
  210. Yu TA, Chiang CH, Wu HW, Li CM, Yang CF, Chen JH, Chen YW, Yeh SD (2011) Generation of transgenic watermelon resistant to Zucchini yellow mosaic virus and Papaya ringspot virus type W. Plant Cell Rep 30:359–371CrossRefGoogle Scholar
  211. Zainal Z, Marouf E, Ismail I, Fei CK (2009) Expression of the Capsicuum annum (Chilli) defensin gene in transgenic tomatoes confers enhanced resistance to fungal pathogens. Am J Plant Physiol 4:70–79CrossRefGoogle Scholar
  212. Zhang X, Zou Z, Gong P, Zhang J, Ziaf K, Li H, Xiao F, Ye Z (2011a) Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett 33:403–409CrossRefGoogle Scholar
  213. Zhang Y, Li H, Shu W, Zhang C, Ye Z (2011b) RNA interference of a mitochondrial APX gene improves vitamin C accumulation in tomato fruit. Sci Hortic 129:222–226Google Scholar
  214. Zhang HY, Liu HM, Liu XZ (2015) Production of transgenic kiwifruit plants harboring the SbtCry1Ac gene. Genet Mol Res 14:8483–8489CrossRefGoogle Scholar
  215. Zheng ZL, Yang Z, Jang JC, Metzger JD (2001) Modification of plant architecture in chrysanthemum by ectopic expression of the tobacco phytochrome B1 gene. J Am Soc Hortic Sci 126:19–26Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Nehanjali Parmar
    • 1
  • Kunwar Harendra Singh
    • 2
  • Deepika Sharma
    • 2
  • Lal Singh
    • 2
  • Pankaj Kumar
    • 3
  • J. Nanjundan
    • 4
  • Yasin Jeshima Khan
    • 5
  • Devendra Kumar Chauhan
    • 6
  • Ajay Kumar Thakur
    • 2
  1. 1.Dr. Y.S. Parmar University of Horticulture and ForestrySolanIndia
  2. 2.ICAR-Directorate of Rapeseed-Mustard ResearchBharatpurIndia
  3. 3.National Institute of Plant Genome ResearchNew DelhiIndia
  4. 4.ICAR-Indian Agricultural Research InstituteThe NilgirisIndia
  5. 5.Division of Genomic ResourcesICAR-National Bureau of Plant Genetic ResourcesNew DelhiIndia
  6. 6.Division of Plant Breeding and GeneticsSher-e-Kashmir University of Agricultural Sciences and Technology of JammuJammuIndia

Personalised recommendations