Advertisement

3 Biotech

, 7:206 | Cite as

Optimization of pectinase-assisted and tri-solvent-mediated extraction and recovery of lycopene from waste tomato peels

  • Pravin J. Munde
  • Abhijeet B. Muley
  • Mayur R. Ladole
  • Amesh V. Pawar
  • Mohammed I. Talib
  • Vishal R. Parate
Original Article

Abstract

In the present work, optimization of pectinase-assisted and tri-solvent-mediated extraction of lycopene from waste tomato peels was carried out. The optimized parameters for enzymatic pre-treatment were 2% pectinase concentration, pH 5.5, 4-h incubation, 45 °C and 150 rpm. Maximum recovery of lycopene from tomato peels using optimized tri-solvent extraction was achieved at 45 °C, 120-min incubation and 200 rpm. The extracted lycopene was confirmed through functional and characteristic peaks in UV–Vis and FTIR spectra and with retention time in HPLC. The radical scavenging activity was 72.30 ± 2.70 and 43.40 ± 2.01 µg ascorbic acid equivalents (AAE)/ml for 1,1-diphenyl-2-picrylhydrzyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radicals, respectively. The optimized method resulted in 7.38, 4.65 and 1.59 times enhancement in lycopene extraction and recovery in correlation with single solvent, enzyme-treated and tri-solvent extraction methods, respectively.

Keywords

Lycopene Tomato peels Antioxidant Pectinase Tri-solvent extraction 

Notes

Acknowledgements

The authors would like to thank the Department of Food Technology, University Institute of Chemical Technology, North Maharashtra University, Jalgaon, India for availing all the required facilities and financial support to carry out this research work.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest related to this work.

References

  1. Barzana E, Rubio D, Santamaria RI, Garcia-Correa O, Garcia F, Sanz VER, Lopez-Munguia A (2002) Enzyme-mediated solvent extraction of carotenoids from marigold flower (Tagetes erecta). J Agric Food Chem 50(16):4491–4496. doi: 10.1021/jf025550q CrossRefGoogle Scholar
  2. Caris-Veyrat C, Schmid A, Carail M, Bohm V (2003) Cleavage products of lycopene produced by in vitro oxidations: characterization and mechanisms of formation. J Agric Food Chem 51(25):7318–7325. doi: 10.1021/jf034735 CrossRefGoogle Scholar
  3. Chen S, Xing XH, Huang JJ, Xu MS (2011) Enzyme-assisted extraction of flavonoids from Ginkgo biloba leaves: improvement effect of flavonol transglycosylation catalyzed by Penicillium decumbens cellulase. Enzyme Microb Technol 48(1):100–105. doi: 10.1016/j.enzmictec.2010.09.017 CrossRefGoogle Scholar
  4. Choudhari SM, Ananthanarayan L (2007) Enzyme aided extraction of lycopene from tomato tissues. Food Chem 102(1):77–81. doi: 10.1016/j.foodchem.2006.04.031 CrossRefGoogle Scholar
  5. Choudhary R, Bowser TJ, Weckler P, Maness NO, McGlynn W (2009) Rapid estimation of lycopene concentration in watermelon and tomato puree by fiber optic visible reflectance spectroscopy. Postharvest Biol Technol 52(1):103–109. doi: 10.1016/j.postharvbio.2008.10.002 CrossRefGoogle Scholar
  6. Cinar I (2005) Effects of cellulase and pectinase concentrations on the colour yield of enzyme extracted plant carotenoids. Process Biochem 40(2):945–949. doi: 10.1016/j.procbio.2004.02.022 CrossRefGoogle Scholar
  7. Ciriminna R, Fidalgo A, Meneguzzo F, Ilharco LM, Pagliaro M (2016) Lycopene: emerging production methods and applications of a valued carotenoid. ACS Sustain Chem Eng 4:643–650. doi: 10.1021/acssuschemeng.5b01516 CrossRefGoogle Scholar
  8. Cuccolini S, Aldini A, Visai L, Daglia M, Ferrari D (2013) Environmentally friendly lycopene purification from tomato peel waste: enzymatic assisted aqueous extraction. J Agric Food Chem 61(8):1646–1651. doi: 10.1021/jf3027815 CrossRefGoogle Scholar
  9. Fish WW, Perkins-Veazie P, Collins JK (2002) A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. J Food Compos Anal 15(3):309–317. doi: 10.1006/jfca.2002.1069 CrossRefGoogle Scholar
  10. Floegel A, Kim DO, Chung SJ, Koo SI, Chun OK (2011) Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compos Anal 24(7):1043–1048. doi: 10.1016/j.jfca.2011.01.008 CrossRefGoogle Scholar
  11. Izadifar M, Baik OD (2008) An optimum ethanol-water solvent system for extraction of podophyllotoxin: experimental study, diffusivity determination and modeling. Sep Purif Technol 63(1):53–60. doi: 10.1016/j.seppur.2008.03.041 CrossRefGoogle Scholar
  12. Kamil MM, Mohamed GF, Shaheen MS (2011) Fourier transformer infrared spectroscopy for quality assurance of tomato products. J Am Sci 27(6):253–260Google Scholar
  13. Kim CH, Park MK, Kim SK, Cho YH (2014) Antioxidant capacity and anti-inflammatory activity of lycopene in watermelon. Int J Food Sci Technol 49(9):2083–2091. doi: 10.1111/ijfs.12517 CrossRefGoogle Scholar
  14. Konwarh R, Pramanik S, Devi KSP, Saikia N, Boruah R, Maiti TK, Deka RC, Karak N (2012) Lycopene coupled ‘trifoliate’ polyaniline nanofibers as multi-functional biomaterial. J Mater Chem 22(30):15062–15070. doi: 10.1039/c2jm32530f CrossRefGoogle Scholar
  15. Ladole MR, Muley AB, Patil ID, Talib MI, Parate VR (2014) Immobilization of tropizyme-P on amino-functionalized magnetic nanoparticles for fruit juice clarification. J Biochem Technol 5(4):838–845Google Scholar
  16. Lavecchia R, Zuorro A (2008) Improved lycopene extraction from tomato peels using cell-wall degrading enzymes. Eur Food Res Technol 228(1):153–158. doi: 10.1007/s00217-008-0897-8 CrossRefGoogle Scholar
  17. Lenucci MS, De Caroli M, Marrese PP, Iurlaro A, Rescio L, Böhm V, Dalessandro G, Piro G (2015) Enzyme-aided extraction of lycopene from high-pigment tomato cultivars by supercritical carbon dioxide. Food Chem 170:193–202. doi: 10.1016/j.foodchem.2014.08.081 CrossRefGoogle Scholar
  18. Lopez-Cervantes J, Sanchez-Machado DI, Valenzuela-Sanchez KP, Nunez-Gastelum JA, Escarcega-Galaz AA, Rodríguez-Ramirez R (2014) Effect of solvents and methods of stirring in extraction of lycopene, oleoresin and fatty acids from over-ripe tomato. Int J Food Sci Nutr 65(2):187–193. doi: 10.3109/09637486.2013.839630 CrossRefGoogle Scholar
  19. Mohamad M, Ali MW, Ahmad A (2010) Modelling for extraction of major phytochemical components from Eurycoma longifolia. J Appl Sci 10(21):2572–2577CrossRefGoogle Scholar
  20. Mohamad M, Ali MW, Ripin A, Ahmad A (2013) Effect of extraction process parameters on the yield of bioactive compounds from the roots of Eurycoma longifolia. J Teknol 60:51–57. doi: 10.11113/jt.v60.1441 Google Scholar
  21. Mulchandani K, Kar JR, Singhal RS (2015) Extraction of lipids from Chlorella saccharophila using high-pressure homogenization followed by three phase partitioning. Appl Biochem Biotechnol 176(6):1613–1626. doi: 10.1007/s12010-015-1665-4 CrossRefGoogle Scholar
  22. Nadar SS, Muley AB, Ladole MR, Joshi PU (2016) Macromolecular cross-linked enzyme aggregates (M-CLEAs) of α-amylase. Int J Biol Macromol 84:69–78. doi: 10.1016/j.ijbiomac.2015.11.082 CrossRefGoogle Scholar
  23. Olives Barba AI, Camara-Hurtado M, Sanchez-Mata MC, Fernandez Ruiz V, Lopez-Saenz De Tejada M (2006) Application of a UV-vis detection-HPLC method for a rapid determination of lycopene and β-carotene in vegetables. Food Chem 95(2):328–336. doi: 10.1016/j.foodchem.2005.02.028 CrossRefGoogle Scholar
  24. Palozza P, Catalano A, Simone RE, Mele MC, Cittadini A (2012) Effect of lycopene and tomato products on cholesterol metabolism. Ann Nutr Metab 61(2):126–134. doi: 10.1159/000342077 CrossRefGoogle Scholar
  25. Papaioannou EH, Karabelas AJ (2012) Lycopene recovery from tomato peel under mild conditions assisted by enzymatic pre-treatment and non-ionic surfactants. Acta Biochim Pol 59(1):71–74Google Scholar
  26. Ranveer RC, Patil SN, Sahoo AK (2013) Effect of different parameters on enzyme-assisted extraction of lycopene from tomato processing waste. Food Bioprod Process 91(4):370–375. doi: 10.1016/j.fbp.2013.01.006 CrossRefGoogle Scholar
  27. Rubio-Diaz DE, Francis DM, Rodriguez-Saona LE (2011) External calibration models for the measurement of tomato carotenoids by infrared spectroscopy. J Food Compos Anal 24(1):121–126. doi: 10.1016/j.jfca.2010.06.006 CrossRefGoogle Scholar
  28. Sadler G, Davis J, Dezman D (1990) Rapid extraction of lycopene and β-carotene from reconstituted tomato paste and pink grapefruit homogenates. J Food Sci 55(5):1460–1461. doi: 10.1111/j.1365-2621.1990.tb03958.x CrossRefGoogle Scholar
  29. Sahoo A, Badhe PS, Adivarekar R, Ladole MR, Pandit AB (2016) Synthesis of glycinamides using protease immobilized magnetic nanoparticles. Biotechnol Reports 12:13–25. doi: 10.1016/j.btre.2016.07.002 CrossRefGoogle Scholar
  30. Santamaria RI, Reyes-Duarte MD, Barzana E, Fernando D, Gama FM, Mota M, Lopez-Munguia A (2000) Selective enzyme-mediated extraction of capsaicinoids and carotenoids from chili guajillo puya (Capsicum annuum L.) using ethanol as solvent. J Agric Food Chem 48(7):3063–3067. doi: 10.1021/jf991242p CrossRefGoogle Scholar
  31. Shi J, Maguer M, Le Kakuda Y, Liptay A, Niekamp F (1999) Lycopene degradation and isomerization in tomato dehydration. Food Res Int 32(1):15–21. doi: 10.1016/S0963-9969(99)00059-9 CrossRefGoogle Scholar
  32. Sonawane SK, Arya SS (2014) Effect of drying and storage on bioactive components of jambhul and wood apple. J Food Sci Technol 52(5):2833–2841. doi: 10.1007/s13197-014-1321-y CrossRefGoogle Scholar
  33. Varakumar S, Umesh KV, Singhal RS (2017) Enhanced extraction of oleoresin from ginger (Zingiber officinale) rhizome powder using enzyme assisted three phase partitioning. Food Chem 2016:27–36. doi: 10.1016/j.foodchem.2016.07.180 CrossRefGoogle Scholar
  34. Xianquan S, Shi J, Kakuda Y, Yueming J (2005) Stability of lycopene during food processing and storage. J Med Food 8(4):413–422. doi: 10.1089/jmf.2005.8.413 CrossRefGoogle Scholar
  35. Zuorro A, Fidaleo M, Lavecchia R (2011) Enzyme-assisted extraction of lycopene from tomato processing waste. Enzyme Microb Technol 49(6–7):567–573. doi: 10.1016/j.enzmictec.2011.04.020 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Pravin J. Munde
    • 1
  • Abhijeet B. Muley
    • 1
  • Mayur R. Ladole
    • 1
  • Amesh V. Pawar
    • 1
  • Mohammed I. Talib
    • 1
  • Vishal R. Parate
    • 1
  1. 1.Department of Food Technology, University Institute of Chemical TechnologyNorth Maharashtra UniversityJalgaonIndia

Personalised recommendations