3 Biotech

, 7:44 | Cite as

Solid state fermentation (SSF): diversity of applications to valorize waste and biomass

  • M. A. Lizardi-Jiménez
  • R. Hernández-Martínez
Review Article


Solid state fermentation is currently used in a range of applications including classical applications, such as enzyme or antibiotic production, recently developed products, such as bioactive compounds and organic acids, new trends regarding bioethanol and biodiesel as sources of alternative energy, and biosurfactant molecules with environmental purposes of valorising unexploited biomass. This work summarizes the diversity of applications of solid state fermentation to valorize biomass regarding alternative energy and environmental purposes. The success of applying solid state fermentation to a specific process is affected by the nature of specific microorganisms and substrates. An exhaustive number of microorganisms able to grow in a solid matrix are presented, including fungus such as Aspergillus or Penicillum for antibiotics, Rhizopus for bioactive compounds, Mortierella for biodiesel to bacteria, Bacillus for biosurfactant production, or yeast for bioethanol.


Solid state fermentation Agro-industrial waste Microorganisms Metabolites 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest in the publication.


  1. Abbasi H, Mortazavipour SR, Setudeh M (2011) Polygalacturonase (PG) production by fungal strains using agro-industrial bioproduct in solid state fermentation. Chem Eng Res Bull 15(1):1–5. doi: 10.3329/cerb.v15i1.6368 CrossRefGoogle Scholar
  2. Adinarayana K, Ellaiah P, Srinivasulu B, Devi RB, Adinarayana G (2003) Response surface methodological approach to optimize the nutritional parameters for neomycin production by Streptomyces marinensis under solid-state fermentation. Process Biochem 38(11):1565–1572. doi: 10.1016/S0032-9592(03)00057-8 CrossRefGoogle Scholar
  3. Ajila CM, Brar SK, Verma M, Tyagi RD, Valéro JR (2011) Solid-state fermentation of apple pomace using Phanerocheate chrysosporium—liberation and extraction of phenolic antioxidants. Food Chem 126(3):1071–1080. doi: 10.1016/j.foodchem.2010.11.129 CrossRefGoogle Scholar
  4. Angel-Cuapio A, Figueroa-Montero A, Favela-Torres E, Viniegra-González G, Perraud-Gaime I, Loera O (2015) Critical values of porosity in rice cultures of Isaria fumosorosea by adding water hyacinth: effect on conidial yields and quality. Appl Biochem Biotechnol 177(2):446–457. doi: 10.1007/s12010-015-1754-4 CrossRefGoogle Scholar
  5. Bento FM, de Oliveira CFA, Okeke BC, Frankenberger WT (2005) Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiol Res 160:249–255. doi: 10.1016/j.micres.2004.08.005 CrossRefGoogle Scholar
  6. Bhargav S, Panda BP, Ali M, Javed S (2008) Solid-state fermentation: an overview. Chem Biochem Eng 22(1):49–70Google Scholar
  7. Buenrostro-Figueroa J, Ascacio-Valdés A, Sepúlveda L, De la Cruz R, Prado-Barragán A, Aguilar-González MA, Aguilar CN (2014) Potential use of different agroindustrial by-products as supports for fungal ellagitannase production under solid-state fermentation. Food Bioprod Process 92(4):376–382. doi: 10.1016/j.fbp.2013.08.010 CrossRefGoogle Scholar
  8. Cavalcante RS, Lima HL, Pinto GA, Gava CA, Rodrigues S (2008) Effect of moisture on Trichoderma conidia production on corn and wheat bran by solid state fermentation. Food Bioprocess Technol 1(1):100–104. doi: 10.1007/s11947-007-0034-x CrossRefGoogle Scholar
  9. Cheirsilp B, Kitcha S (2015) Solid state fermentation by cellulolytic oleaginous fungi for direct conversion of lignocellulosic biomass into lipids: fed-batch and repeated-batch fermentations. Ind Crop Prod 66:73–80. doi: 10.1016/j.indcrop.2014.12.035 CrossRefGoogle Scholar
  10. Chen HZ, Xu J, Li ZH (2007) Temperature cycling to improve the ethanol production with solid state simultaneous saccharification and fermentation. Appl Biochem Microbiol 43(1):57–60. doi: 10.1134/S0003683807010103 CrossRefGoogle Scholar
  11. Chen L, Yang X, Raza W, Luo J, Zhang F, Shen Q (2011) Solid-state fermentation of agro-industrial wastes to produce bioorganic fertilizer for the biocontrol of Fusarium wilt of cucumber in continuously cropped soil. Bioresour Technol 102(4):3900–3910. doi: 10.1016/j.biortech.2010.11.126 CrossRefGoogle Scholar
  12. Coradi G, Da Visitação V, De Lima EA, Saito L, Palmieri D, Takita M, De Lima V (2013) Comparing submerged and solid-state fermentation of agro-industrial residues for the production and characterization of lipase by Trichoderma harzianum. Ann Microbiol 63(2):533–540. doi: 10.1007/s13213-012-0500-1 CrossRefGoogle Scholar
  13. Cuadra T, Fernandez FJ, Tomasini A, Barrios-González J (2008) Influence of pH regulation and nutrient content on cephalosporin C production in solid-state fermentation by Acremonium chrysogenum C10. Lett Appl Microbiol 46(2):216–220. doi: 10.1111/j.1472-765X.2007.02285.x CrossRefGoogle Scholar
  14. Dey TB, Kuhad RC (2014) Enhanced production and extraction of phenolic compounds from wheat by solid-state fermentation with Rhizopus oryzae RCK2012. Biotechnol Rep 4:120–127. doi: 10.1016/j.btre.2014.09.006 CrossRefGoogle Scholar
  15. Dhillon GS, Brar SK, Kaur S, Verma M (2013) Bioproduction and extraction optimization of citric acid from Aspergillus niger by rotating drum type solid-state bioreactor. Ind Crop Prod 41:78–84. doi: 10.1016/j.indcrop.2012.04.001 CrossRefGoogle Scholar
  16. Diaz-Godinez G, Soriano-Santos J, Augur C, Viniegra-González G (2001) Exopectinases produced by Aspergillus niger in solid-state and submerged fermentation: a comparative study. J Ind Microbiol Biotechnol 26(5):271–275. doi: 10.1038/sj.jim.7000113 CrossRefGoogle Scholar
  17. Economou CN, Makri A, Aggelis G, Pavlou S, Vayenas DV (2010) Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Bioresour Technol 101(4):1385–1388. doi: 10.1016/j.biortech.2009.09.028 CrossRefGoogle Scholar
  18. Economou CN, Aggelis G, Pavlou S, Vayenas DV (2011) Single cell oil production from rice hulls hydrolysate. Bioresour Technol 102(20):9737–9742. doi: 10.1016/j.biortech.2011.08.025 CrossRefGoogle Scholar
  19. Ellaiah P, Srinivasulu B, Adinarayana K (2004) Optimisation studies on neomycin production by a mutant strain of Streptomyces marinensis in solid state fermentation. Process Biochem 39(5):529–534. doi: 10.1016/S0032-9592(02)00059-6 CrossRefGoogle Scholar
  20. El-Naggar MY, El-Assar SA, Abdul-Gawad SM (2009) Solid-state fermentation for the production of meroparamycin by Streptomyces sp. strain MAR01. J Microbiol Biotechnol 19(5):468–473. doi: 10.4014/jmb.0807.457 CrossRefGoogle Scholar
  21. Fakas S, Makri A, Mavromati M, Tselepi M, Aggelis G (2009) Fatty acid composition in lipid fractions lengthwise the mycelium of Mortierella isabellina and lipid production by solid state fermentation. Bioresour Technol 100(23):6118–6120. doi: 10.1016/j.biortech.2009.06.015 CrossRefGoogle Scholar
  22. Fei Q, Chang HN, Shang L (2011) Exploring low-cost carbon sources for microbial lipids production by fed-batch cultivation of Cryptococcus albidus. Biotechnol Bioprocess Eng 16(3):482–487. doi: 10.1007/s12257-010-0370-y CrossRefGoogle Scholar
  23. Fleuri LF, de Oliveira MC, Arcuri MDLC, Capoville BL, Pereira MS, Delgado CHO, Novelli PK (2014) Production of fungal lipases using wheat bran and soybean bran and incorporation of sugarcane bagasse as a co-substrate in solid-state fermentation. Food Sci Biotechnol 23(4):1199–1205. doi: 10.1007/s10068-014-0164-7 CrossRefGoogle Scholar
  24. Freire DG, Sousa JS, Cavalcanti-Oliveira ED (2011) Biotechnological methods to produce biodiesel. In: Pandey A, Larroche C, Ricke SC, Dussap C-G, Gnansounou E (eds) Biofuels—alternative feedstocks and conversion processes. Elsevier, New York, pp 319–337Google Scholar
  25. Ghribi D, Abdelkefi-Mesrati L, Mnif I, Kammoun R, Ayadi I, Saadaoui I, Chaabouni-Ellouze S (2012) Investigation of antimicrobial activity and statistical optimization of Bacillus subtilis SPB1 biosurfactant production in solid-state fermentation. Biomed Res Int. doi: 10.1155/2012/373682 Google Scholar
  26. Hariharan S, Nambisan P (2012) Optimization of lignin peroxidase, manganese peroxidase, and Lac production from Ganoderma lucidum under solid state fermentation of pineapple leaf. BioRes 8(1):250–271CrossRefGoogle Scholar
  27. He Q, Chen H (2013) Pilot-scale gas double-dynamic solid-state fermentation for the production of industrial enzymes. Food Bioprocess Technol 6(10):2916–2924. doi: 10.1007/s11947-012-0956-9 CrossRefGoogle Scholar
  28. Hölker U, Lenz J (2005) Solid-state fermentation—are there any biotechnological advantages? Curr Opin Microbiol 8(3):301–306. doi: 10.1016/j.mib.2005.04.006 CrossRefGoogle Scholar
  29. Hui L, Wan C, Hai-Tao D, Xue-Jiao C, Qi-Fa Z, Yu-Hua Z (2010) Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation. Bioresour Technol 101(19):7556–7562. doi: 10.1016/j.biortech.2010.04.027 CrossRefGoogle Scholar
  30. Imtiaz S, Mukhtar H (2013) Production of alkaline protease by Bacillus subtilis using solid state fermentation. Afr J Microbiol Res 7(16):1558–1568. doi: 10.5897/AJMR12.1845 CrossRefGoogle Scholar
  31. Jangbua P, Laoteng K, Kitsubun P, Nopharatana M, Tongta A (2009) Gamma-linolenic acid production of Mucor rouxii by solid-state fermentation using agricultural by-products. Lett Appl Microbiol 49(1):91–97. doi: 10.1111/j.1472-765X.2009.02624.x CrossRefGoogle Scholar
  32. John RP, Nampoothiri KM, Pandey A (2006) Solid-state fermentation for l-lactic acid production from agro wastes using Lactobacillus delbrueckii. Process Biochem 41(4):759–763. doi: 10.1016/j.procbio.2005.09.013 CrossRefGoogle Scholar
  33. Kim JS, Kassa A, Skinner M, Hata T, Parker BL (2011) Production of thermotolerant entomopathogenic fungal conidia on millet grain. J Ind Microbiol Biot 38(6):697–704. doi: 10.1007/s10295-010-0850-2 CrossRefGoogle Scholar
  34. Kim JJ, Xie L, Han JH, Lee SY (2014) Influence of additives on the yield and pathogenicity of conidia produced by solid state cultivation of an Isaria javanica isolate. Mycobiology 42(4):346–352. doi: 10.5941/MYCO.2014.42.4.346 CrossRefGoogle Scholar
  35. Kiran GS, Thomas TA, Selvin J, Sabarathnam B, Lipton AP (2010) Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresour Technol 101(7):2389–2396. doi: 10.1016/j.biortech.2009.11.023 CrossRefGoogle Scholar
  36. Kuhar F, Castiglia V, Levin L (2015) Enhancement of laccase production and malachite green decolorization by co-culturing Ganoderma lucidum and Trametes versicolor in solid-state fermentation. Int Biodeterior Biodegrad 104:238–243. doi: 10.1016/j.ibiod.2015.06.017 CrossRefGoogle Scholar
  37. Kumar A, Kanwar SS (2012) Lipase production in solid-state fermentation (SSF): recent developments and biotechnological applications. Dyn Biochem, Process Biotechnol Mol Biol 6(1):13–27Google Scholar
  38. Kumar D, Jain VK, Shanker G, Srivastava A (2003) Utilisation of fruits waste for citric acid production by solid state fermentation. Process Biochem 38(12):1725–1729. doi: 10.1016/S0032-9592(02)00253-4 CrossRefGoogle Scholar
  39. Kumar D, Verma R, Bhalla TC (2010) Citric acid production by Aspergillus niger van. Tieghem MTCC 281 using waste apple pomace as a substrate. J Food Sci Technol 47(4):458–460. doi: 10.1007/s13197-010-0077-2 CrossRefGoogle Scholar
  40. Li S, Li G, Zhang L, Zhou Z, Han B, Hou W, Li T (2013) A demonstration study of ethanol production from sweet sorghum stems with advanced solid state fermentation technology. Appl Energy 102:260–265. doi: 10.1016/j.apenergy.2012.09.060 CrossRefGoogle Scholar
  41. Liu Y, Li C, Meng X, Yan Y (2013) Biodiesel synthesis directly catalyzed by the fermented solid of Burkholderia cenocepacia via solid state fermentation. Fuel Process Technol 106:303–309. doi: 10.1016/j.fuproc.2012.08.013 CrossRefGoogle Scholar
  42. Malilas W, Kang SW, Kim SB, Yoo HY, Chulalaksananukul W, Kim SW (2013) Lipase from Penicillium camembertii KCCM 11268: optimization of solid state fermentation and application to biodiesel production. Korean J Chem Eng 30(2):405–412. doi: 10.1007/s11814-012-0132-y CrossRefGoogle Scholar
  43. Martins VG, Kalil SJ, Costa JAV (2009) In situ bioremediation using biosurfactant produced by solid state fermentation. World J Microbiol Biotech 25(5):843–851. doi: 10.1007/s11274-009-9955-z CrossRefGoogle Scholar
  44. Martins S, Teixeira JA, Mussatto SI (2013) Solid-state fermentation as a strategy to improve the bioactive compounds recovery from Larrea tridentata leaves. Appl Biochem Biotechnol 171(5):1227–1239. doi: 10.1007/s12010-013-0222-2 CrossRefGoogle Scholar
  45. Mazaheri D, Shojaosadati SA, Mousavi SM, Hejazi P, Saharkhiz S (2012) Bioethanol production from carob pods by solid-state fermentation with Zymomonas mobilis. Appl Energy 99:372–378. doi: 10.1016/j.apenergy.2012.05.045 CrossRefGoogle Scholar
  46. McKinney K, Combs J, Becker P, Humphries A, Filer K, Vriesekoop F (2015) Optimization of phytase production from Escherichia coli by altering solid-state fermentation conditions. Ferment 1(1):13–23. doi: 10.3390/fermentation1010013 CrossRefGoogle Scholar
  47. Md F (2012) Biosurfactant: production and application. J Pet Environ Biotechnol 3(124):2Google Scholar
  48. Mendoza-Cal A, Cuevas-Glory L, Lizama-Uc G, Ortiz-Vázquez E (2010) Naringinase production from filamentous fungi using grapefruit rind in solid state fermentation. Afr J Microbiol Res 4(19):1964–1969Google Scholar
  49. Mohanty SK, Behera S, Swain MR, Ray RC (2009) Bioethanol production from mahula (Madhuca latifolia L.) flowers by solid-state fermentation. Appl Energy 86(5):640–644. doi: 10.1016/j.apenergy.2008.08.022 CrossRefGoogle Scholar
  50. Molaverdi M, Karimi K, Khanahmadi M, Goshadrou A (2013) Enhanced sweet sorghum stalk to ethanol by fungus Mucor indicus using solid state fermentation followed by simultaneous saccharification and fermentation. Ind Crop Prod 49:580–585. doi: 10.1016/j.indcrop.2013.06.024 CrossRefGoogle Scholar
  51. Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24(11):509–515. doi: 10.1016/j.tibtech.2006.09.005 CrossRefGoogle Scholar
  52. Nagavalli M, Ponamgi SPD, Girijashankar V, Venkateswar Rao L (2015) Solid state fermentation and production of rifamycin SV using Amycolatopsis mediterranei. Lett Appl Microbiol 60(1):44–51. doi: 10.1111/lam.12332 CrossRefGoogle Scholar
  53. Naveena BJ, Altaf M, Bhadriah K, Reddy G (2005) Selection of medium components by Plackett–Burman design for production of l (+) lactic acid by Lactobacillus amylophilus GV6 in SSF using wheat bran. Bioresource Technol 96(4):485–490. doi: 10.1016/j.biortech.2004.05.020 CrossRefGoogle Scholar
  54. Neto DC, Meira JA, de Araújo JM, Mitchell DA, Krieger N (2008) Optimization of the production of rhamnolipids by Pseudomonas aeruginosa UFPEDA 614 in solid-state culture. Appl Microbiol Biotechnol 81(3):441. doi: 10.1007/s00253-008-1663-3 CrossRefGoogle Scholar
  55. Özdemir S, Matpan F, Okumus V, Dündar A, Ulutas MS, Kumru M (2012) Isolation of a thermophilic Anoxybacillus flavithermus sp. nov. and production of thermostable α-amylase under solid-state fermentation (SSF). Ann Microbiol 62(4):1367–1375. doi: 10.1007/s13213-011-0385-4 CrossRefGoogle Scholar
  56. Parfene G, Horincar V, Tyagi AK, Malik A, Bahrim G (2013) Production of medium chain saturated fatty acids with enhanced antimicrobial activity from crude coconut fat by solid state cultivation of Yarrowia lipolytica. Food Chem 136(3):1345–1349. doi: 10.1016/j.foodchem.2012.09.057 CrossRefGoogle Scholar
  57. Pham TA, Kim JJ, Kim K (2010) Optimization of solid-state fermentation for improved conidia production of Beauveria bassiana as a mycoinsecticide. Mycobiology 38(2):137–143CrossRefGoogle Scholar
  58. Prakash GB, Padmaja V, Kiran RS (2008) Statistical optimization of process variables for the large-scale production of Metarhizium anisopliae conidiospores in solid-state fermentation. Bioresour Technol 99(6):1530–1537. doi: 10.1016/j.biortech.2007.04.031 CrossRefGoogle Scholar
  59. Qi B, Yao R (2007) l-lactic acid production from Lactobacillus casei by solid state fermentation using rice straw. BioResources 2(3):419–429Google Scholar
  60. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol R 62(3):597–635Google Scholar
  61. Reddy DSR, Latha DP, Latha KPJ (2011) Production of lovastatin by solid state fermentation by Penicillium funiculosum NCIM 1174. Drug Invent Today 3(6):75–77Google Scholar
  62. Robledo A, Aguilera-Carbó A, Rodríguez R, Martínez JL, Garza Y, Aguilar CN (2008) Ellagic acid production by Aspergillus niger in solid state fermentation of pomegranate residues. J Ind Microbiol Biotechnol 35(6):507–513. doi: 10.1007/s10295-008-0309-x CrossRefGoogle Scholar
  63. Rodríguez Couto S (2008) Exploitation of biological wastes for the production of value-added products under solid-state fermentation conditions. Biotechnol J 3(7):859–870. doi: 10.1002/biot.200800031 CrossRefGoogle Scholar
  64. Rodríguez LA, Toro ME, Vazquez F, Correa-Daneri ML, Gouiric SC, Vallejo MD (2010) Bioethanol production from grape and sugar beet pomaces by solid-state fermentation. Int J Hyd Energy 35(11):5914–5917. doi: 10.1016/j.ijhydene.2009.12.112 CrossRefGoogle Scholar
  65. Roslan AM, Yee PL, Shah UKM, Aziz SA, Hassan MA (2011) Production of bioethanol from rice straw using cellulase by local Aspergillus sp. Int J Agric Res 6(2):188–193. doi: 10.3923/ijar.2011.188.193 CrossRefGoogle Scholar
  66. Sahoo RK, Subudhi E, Kumar M (2014) Quantitative approach to track lipase producing Pseudomonas sp. S1 in nonsterilized solid state fermentation. Lett Appl Microbiol 58(6):610–616. doi: 10.1111/lam.12235 CrossRefGoogle Scholar
  67. Salar RK, Certik M, Brezova V (2012) Modulation of phenolic content and antioxidant activity of maize by solid state fermentation with Thamnidium elegans CCF 1456. Biotechnol Bioprocess Eng 17(1):109–116. doi: 10.1007/s12257-011-0455-2 CrossRefGoogle Scholar
  68. Sandhya C, Sumantha A, Szakacs G, Pandey A (2005) Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem 40(8):2689–2694. doi: 10.1016/j.procbio.2004.12.001 CrossRefGoogle Scholar
  69. Santa HSD, Santa ORD, Brand D, Vandenberghe LPS, Soccol CR (2005) Spore production of Beauveria bassiana from agro-industrial residues. Braz Arch Biol Techn 48:51–60. doi: 10.1590/S1516-89132005000400007 CrossRefGoogle Scholar
  70. Saratale GD, Kshirsagar SD, Sampange VT, Saratale RG, Oh SE, Govindwar SP, Oh MK (2014) Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production. Appl Biochem Biotechnol 174(8):2801–2817. doi: 10.1007/s12010-014-1227-1 CrossRefGoogle Scholar
  71. Schmidt CG, Gonçalves LM, Prietto L, Hackbart HS, Furlong EB (2014) Antioxidant activity and enzyme inhibition of phenolic acids from fermented rice bran with fungus Rizhopus oryzae. Food Chem 146:371–377. doi: 10.1016/j.foodchem.2013.09.101 CrossRefGoogle Scholar
  72. Sepúlveda L, Aguilera-Carbó A, Ascacio-Valdés JA, Rodríguez-Herrera R, Martínez-Hernández JL, Aguilar CN (2012) Optimization of ellagic acid accumulation by Aspergillus niger GH1 in solid state culture using pomegranate shell powder as a support. Process Biochem 47(12):2199–2203. doi: 10.1016/j.procbio.2012.08.013 CrossRefGoogle Scholar
  73. Shaibani N, Ghazvini S, Andalibi MR, Yaghmaei S (2011) Ethanol production from sugarcane bagasse by means of enzymes produced by solid state fermentation method. World Acad Sci Eng Technol 59:1836–1839Google Scholar
  74. Sharma A, Vivekanand V, Singh RP (2008) Solid-state fermentation for gluconic acid production from sugarcane molasses by Aspergillus niger ARNU-4 employing tea waste as the novel solid support. Bioresour Technol 99(9):3444–3450. doi: 10.1016/j.biortech.2007.08.006 CrossRefGoogle Scholar
  75. Singh OV, Jain RK, Singh RP (2003) Gluconic acid production under varying fermentation conditions by Aspergillus niger. J ChemTechnol Biotechnol 78(2–3):208–212. doi: 10.1002/jctb.748 Google Scholar
  76. Singhania RR, Patel AK, Soccol CR, Pandey A (2009) Recent advances in solid-state fermentation. Biochem Eng J 44(1):13–18. doi: 10.1016/j.bej.2008.10.019 CrossRefGoogle Scholar
  77. Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb Technol 46(7):541–549. doi: 10.1016/j.enzmictec.2010.03.010 CrossRefGoogle Scholar
  78. Soares D, da Silva Serres JD, Corazza ML, Mitchell DA, Gonçalves AG, Krieger N (2015) Analysis of multiphasic behavior during the ethyl esterification of fatty acids catalyzed by a fermented solid with lipolytic activity in a packed-bed bioreactor in a closed-loop batch system. Fuel 159:364–372. doi: 10.1016/j.fuel.2015.06.087 CrossRefGoogle Scholar
  79. Swain MR, Mishra J, Thatoi H (2013) Bioethanol production from sweet potato (Ipomoea batatas L.) flour using co-culture of Trichoderma sp. and Saccharomyces cerevisiae in solid-state fermentation. Braz Arch Biol Technol 56(2):171–179. doi: 10.1590/S1516-89132013000200002 CrossRefGoogle Scholar
  80. Tarocco F, Lecuona RE, Couto AS, Arcas JA (2005) Optimization of erythritol and glycerol accumulation in conidia of Beauveria bassiana by solid-state fermentation, using response surface methodology. Appl Microbiol Biotechnol 68(4):481–488. doi: 10.1007/s00253-005-1901-x CrossRefGoogle Scholar
  81. Thomas L, Larroche C, Pandey A (2013) Current developments in solid-state fermentation. Biochem Eng J 81:146–161. doi: 10.1016/j.bej.2013.10.013 CrossRefGoogle Scholar
  82. Torino MI, Limón RI, Martínez-Villaluenga C, Mäkinen S, Pihlanto A, Vidal-Valverde C, Frias J (2013) Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chem 136(2):1030–1037. doi: 10.1016/j.foodchem.2012.09.015 CrossRefGoogle Scholar
  83. Torrado AM, Cortés S, Salgado JM, Max B, Rodríguez N, Bibbins BP, Domínguez JM (2011) Citric acid production from orange peel wastes by solid-state fermentation. Braz J Microbiol 42(1):394–409. doi: 10.1590/S1517-83822011000100049 CrossRefGoogle Scholar
  84. Toscano L, Montero G, Stoytcheva M, Gochev V, Cervantes L, Campbell H, Gil-Samaniego M (2013) Lipase production through solid-state fermentation using agro-industrial residues as substrates and newly isolated fungal strains. Biotechnol Biotechnol Eq 27(5):4074–4077. doi: 10.5504/BBEQ.2012.0145 CrossRefGoogle Scholar
  85. Tsakona S, Kopsahelis N, Chatzifragkou A, Papanikolaou S, Kookos IK, Koutinas AA (2014) Formulation of fermentation media from flour-rich waste streams for microbial lipid production by Lipomyces starkeyi. J Biotechnol 189:36–45. doi: 10.1016/j.jbiotec.2014.08.011 CrossRefGoogle Scholar
  86. Vastrad BM, Neelagund SE (2012) Optimization of process parameters for rifamycin b production under solid state fermentation from Amycolatopsis mediterranean MTCC14. Int J Curr Pharm Res 4(2):101–108Google Scholar
  87. Vastrad BM, Neelagund SE, Iiger SR, Godbole AM, Kulkarni V (2014) Improved rifamycin B production by Nocardia mediterranei MTCC 14 under solid-state fermentation through process optimization. Biochem Res Int. doi: 10.1155/2014/621309 Google Scholar
  88. Venkatesagowda B, Ponugupaty E, Barbosa AM, Dekker RF (2015) Solid-state fermentation of coconut kernel-cake as substrate for the production of lipases by the coconut kernel-associated fungus Lasiodiplodia theobromae VBE-1. Ann Microbiol 65(1):129–142. doi: 10.1007/s13213-014-0844-9 CrossRefGoogle Scholar
  89. Viniegra-González G, Favela-Torres E (2006) Why solid-state fermentation seems to be resistant to catabolite repression? Food Technol Biotechnol 44(3):397–406Google Scholar
  90. Wang EQ, Li SZ, Tao L, Geng X, Li TC (2010) Modeling of rotating drum bioreactor for anaerobic solid-state fermentation. Appl Energy 87(9):2839–2845. doi: 10.1016/j.apenergy.2009.05.032 CrossRefGoogle Scholar
  91. Xiao Y, Xing G, Rui X, Li W, Chen X, Jiang M, Dong M (2014) Enhancement of the antioxidant capacity of chickpeas by solid state fermentation with Cordyceps militaris SN-18. J Funct Foods 10:210–222. doi: 10.1016/j.jff.2014.06.008 CrossRefGoogle Scholar
  92. Yadegary M, Hamidi A, Alavi SA, Khodaverdi E, Yahaghi H, Sattari S, Yahaghi E (2013) Citric acid production from sugarcane bagasse through solid state fermentation method using Aspergillus niger mold and optimization of citric acid production by Taguchi method. Jundishapur J Microbiol 6(9):e7625. doi: 10.5812/jjm.7625 CrossRefGoogle Scholar
  93. Yang SS, Ling MY (1989) Tetracycline production with sweet potato residue by solid state fermentation. Biotechnol Bioeng 33(8):1021–1028. doi: 10.1002/bit.260330811 CrossRefGoogle Scholar
  94. Yu J, Tan T (2008) Ethanol production by solid state fermentation of sweet sorghum using thermotolerant yeast strain. Fuel Process Technol 89(11):1056–1059. doi: 10.1016/j.fuproc.2008.04.008 CrossRefGoogle Scholar
  95. Zhang J, Hu B (2012) Solid-state fermentation of Mortierella isabellina for lipid production from soybean hull. Appl Biochem Biotechnol 166(4):1034–1046. doi: 10.1007/s12010-011-9491-9 CrossRefGoogle Scholar
  96. Zhihui BAI, Bo JIN, Yuejie I, Jian CHEN, Zuming LI (2008) Utilization of winery wastes for Trichoderma viride biocontrol agent production by solid state fermentation. J Environ Sci 20(3):353–358. doi: 10.1016/S1001-0742(08)60055-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.CONACYT-Instituto Tecnológico Superior de Tierra BlancaTierra BlancaMexico

Personalised recommendations