Advertisement

Primary growth of binary nanoparticle superlattices with distinct systems contingent on synergy: softness and crystalline anisotropy

  • Huiyong Li
  • Dafeng Hu
  • Zemin Zheng
  • Hao Jiang
  • Jiangwei Lu
  • Xuemin Geng
  • Xudong Zhang
  • Yanfen WanEmail author
  • Peng YangEmail author
Original Article

Abstract

Binary nanoparticle superlattices (BNSLs), which are studied for developing multicomponent materials and multifunctional nanodevices, are distinguished by their outstanding synergetic properties. Owing to complex factors that might influence the formation of BNSLs, it is necessary to comprehensively explore the self-assembly of nanocrystals. A variety of BNSL structural configurations, such as NaZn13, Cu3Au, NaCl, AlB2, CaCu5-type structures, were obtained by cocrystallizing Au–Ni and Ag–Ni nanocrystals of different sizes. Specifically, at a similar effective size ratio, the supercrystal structures formed by the Au–Ni and Ag–Ni systems coated with different organic ligands are not essentially the same. We attribute this diversity to the different softness of effective entities and facet-dependent interdigitation between the ligands tethered on the nanoparticle surface. Inherent crystallinity directed formation of the final BNSL structures is likely driven by anisotropic or isotropic cocrystallization. The synergistic effect of the coating agent and crystallinity directed assembly process is reasonably believed to be the important factor affecting the growth of BNSLs, which provides a new idea for the study of kinetics during the self-assembly of supercrystals.

Keywords

BNSLs Ligand Softness parameters The degree of overlaps Coordination environment The intrinsic crystallinity 

Notes

Acknowledgments

The authors acknowledge financial support by the National Science Foundation of China (51871196 and 51771170) and the Applied Basic Research Foundation of Yunnan Province (2017FB080 and 2018FB090). Electron microscopy was carried out in the Analytical Test Center of the Yunnan University.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

13204_2019_1244_MOESM1_ESM.docx (13.7 mb)
Supplementary file1 (DOCX 14071 kb)

References

  1. Altantzis T, Yang Z, Bals S, Tendeloo GV, Pileni MP (2016) Thermal stability of CoAu13 binary nanoparticle superlattices under the electron beam. Chem Mater 28(3). 10.1021/acs.chemmater.5b04898.CrossRefGoogle Scholar
  2. And CBM, Kagan CR, Bawendi MG (2003) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Res 30(1):545–610Google Scholar
  3. Bartlett P, Ottewill RH, Pusey PN (1992) Superlattice formation in binary mixtures of hard-sphere colloids. Phys Rev Lett 68(25):3801CrossRefGoogle Scholar
  4. Bensimon A, Eshet H, Rabani E (2013) On the phase behavior of binary mixtures of nanoparticles. ACS Nano 7(2):978–986CrossRefGoogle Scholar
  5. Bodnarchuk MI, Erni R, Krumeich F, Kovalenko MV (2013) Binary superlattices from colloidal nanocrystals and giant polyoxometalate clusters. Nano Lett 13(4):1699–1705CrossRefGoogle Scholar
  6. Boles MA, Talapin DV (2015) Many-body effects in nanocrystal superlattices: departure from sphere packing explains stability of binary phases. J Am Chem Soc 137(13):4494–4502CrossRefGoogle Scholar
  7. Cargnello M, Diroll BT, Gaulding EA, Murray CB (2014) Enhanced energy transfer in quasi-quaternary nanocrystal superlattices. Adv Mater 26(15):2419–2423CrossRefGoogle Scholar
  8. Chen Z, O’Brien S (2008) Structure direction of II–VI semiconductor quantum dot binary nanoparticle superlattices by tuning radius ratio. ACS Nano 2(6):1219–1229CrossRefGoogle Scholar
  9. Chen J, Dong A, Cai J, Ye X, Kang Y, Kikkawa JM, Murray CB (2010) Collective dipolar interactions in self-assembled magnetic binary nanocrystal superlattice membranes. Nano Lett 10(12):5103CrossRefGoogle Scholar
  10. Chen J, Ye X, Oh SJ, Kikkawa JM, Kagan CR, Murray CB (2013) Bistable magnetoresistance switching in exchange-coupled CoFe2O4–Fe3O4 binary nanocrystal superlattices by self-assembly and thermal annealing. ACS Nano 7(2):1478–1486CrossRefGoogle Scholar
  11. Dai Z, Li Y, Duan G et al (2012) Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface[J]. ACS Nano 6(8):6706–6716CrossRefGoogle Scholar
  12. Dong A, Chen J, Vora PM, Kikkawa JM, Murray CB (2010) Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 466(7305):474–477CrossRefGoogle Scholar
  13. Dong A, Chen J, Xingchen YE, Kikkawa J, Murray M, Christopher B (2011) Enhanced thermal stability and magnetic properties in NaCl-Type FePt-MnO binary nanocrystal superlattices. J Am Chem Soc 133(34): 13296–13299CrossRefGoogle Scholar
  14. Dong A, Ye X, Chen J, Murray CB (2011) Two-dimensional binary and ternary nanocrystal superlattices: the case of monolayers and bilayers. Nano Lett 11(4):1804–1809CrossRefGoogle Scholar
  15. Eldridge MD, Madden PA, Frenkel D (1993) Entropy-driven formation of a superlattice in a hard-sphere binary mixture. Nature 365(6441):35–37CrossRefGoogle Scholar
  16. Farrell Z, Shelton C, Dunn C, Green D (2013) Straightforward, one-step synthesis of alkanethiol-capped silver nanoparticles from an aggregative model of growth. Langmuir Acs J Surf Coll 29(30):9291–9300CrossRefGoogle Scholar
  17. Govorov AO, Bryant GW, Zhang W, Skeini T, Lee J, Kotov NA (2006) Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies. Nano Lett 6(5):984–994CrossRefGoogle Scholar
  18. Harfenist SA, Wang ZL, Alvarez MM, Vezmar I, Whetten RL (1996) Highly oriented molecular Ag nanocrystal arrays. J Phys Chem 100(33):13904–13910CrossRefGoogle Scholar
  19. Ji X, Copenhaver D, Sichmeller C, Peng X (2008) Ligand bonding and dynamics on colloidal nanocrystals at room temperature: the case of alkylamines on CdSe nanocrystals. J Am Chem Soc 130(17):5726–5735CrossRefGoogle Scholar
  20. Kang Y, Ye X, Chen J, Cai Y, Diaz RE, Adzic RR, Stach EA, Murray CB (2013) Design of Pt–Pd binary superlattices exploiting shape effects and synergistic effects for oxygen reduction reactions. J Am Chem Soc 135(1):42–45CrossRefGoogle Scholar
  21. Katsaros G, Spathis P, Stoffel M, Fournel F, Mongillo M, Bouchiat V, Lefloch F, Rastelli A, Schmidt OG, Franceschi SD (2010) Hybrid superconductor-semiconductor devices made from self-assembled SiGe nanocrystals on silicon. Nat Nanotechnol 5(6):458CrossRefGoogle Scholar
  22. Kiely CJ, Fink J, Al E (1998) Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 396(6710):444–446CrossRefGoogle Scholar
  23. Landman U, Luedtke WD (2003) Small is different: energetic, structural, thermal, and mechanical properties of passivated nanocluster assemblies. Faraday Discuss 125(2):1–22Google Scholar
  24. Leung PW, Henley CL, Chester GV (1989) Dodecagonal order in a two-dimensional Lennard–Jones system. Phys Rev B: Condens Matter 39(1):446CrossRefGoogle Scholar
  25. Leunissen ME, Christova CG, Hynninen AP, Royall CP, Campbell AI, Imhof A, Dijkstra M, Van RR, Van BA (2005) Ionic colloidal crystals of oppositely charged particles. Nature 437(7056):235–240CrossRefGoogle Scholar
  26. Loh XJ, Lee TC, Dou Q, Deen GR (2015) Utilising inorganic nanocarriers for gene delivery. Biomater Sci 4(1):70–86CrossRefGoogle Scholar
  27. Murray MJ, Sanders JV (1980) Close-packed structures of spheres of two different sizes II. The packing densities of likely arrangements. Philos Mag A 42(6):721–740CrossRefGoogle Scholar
  28. Murray CB, Kagan CR, Bawendi MG (1995) Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270(5240):1335–1338CrossRefGoogle Scholar
  29. Nagaoka Y, Ou C, Wang Z, Cao YC (2012) Structural control of nanocrystal superlattices using organic guest molecules. J Am Chem Soc 134(6):2868–2871CrossRefGoogle Scholar
  30. Overgaag K, Evers W, De NB, Koole R, Meeldijk J, Vanmaekelbergh D (2008) Binary superlattices of PbSe and CdSe nanocrystals. J Am Chem Soc 130(25):7833–7835CrossRefGoogle Scholar
  31. Portalès H, Goubet N, Sirotkin S, Duval E, Mermet A, Albouy PA, Pileni MP (2012) Crystallinity segregation upon selective self-assembling of gold colloidal single nanocrystals. Nano Lett 12(10):5292CrossRefGoogle Scholar
  32. Rupich SM, Shevchenko EV, Bodnarchuk MI, Lee B, Talapin DV (2010) Size-dependent multiple twinning in nanocrystal superlattices. J Am Chem Soc 132(1):289–296CrossRefGoogle Scholar
  33. Schapotschnikow P, Vlugt TJH (2009) Understanding interactions between capped nanocrystals: Three-body and chain packing effects. J Chem Phys 131(12):2930CrossRefGoogle Scholar
  34. Shevchenko EV, Talapin DV, O'Brien S, Murray CB (2005) Polymorphism in AB(13) nanoparticle superlattices: an example of semiconductor-metal metamaterials. J Am Chem Soc 127(24):8741–8747CrossRefGoogle Scholar
  35. Shevchenko EV, Talapin DV, Kotov NA, O'Brien S, Murray CB (2006a) Structural diversity in binary nanoparticle superlattices. Nature 439(7072):55–59CrossRefGoogle Scholar
  36. Shevchenko EV, Talapin DV, Murray CB, O'Brien S (2006b) Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J Am Chem Soc 128(11):3620–3637CrossRefGoogle Scholar
  37. Shevchenko EV, Kortright JB, Talapin DV, Aloni S, Alivisatos AP (2007) Quasi-ternary nanoparticle superlattices through nanoparticle design. Adv Mater 19(23):4183–4183CrossRefGoogle Scholar
  38. Smith AM, Nie S (2010) Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res 43(2):190CrossRefGoogle Scholar
  39. Stoeva SI, Prasad BLV, Uma S, Stoimenov PK, Zaikovski V, Sorensen CM, Klabunde KJ (2003) Face-centered cubic and hexagonal closed-packed nanocrystal superlattices of gold nanoparticles prepared by different methods. J Phys Chem B 107(30):7441–7448CrossRefGoogle Scholar
  40. Talapin DV, Shevchenko EV, Bodnarchuk MI, Ye X, Chen J, Murray CB (2009) Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461(7266):964–967CrossRefGoogle Scholar
  41. Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110(1):389–458CrossRefGoogle Scholar
  42. Tan R, Zhu H, Cao C, Chen O (2016) Multi-component superstructures self-assembled from nanocrystal building blocks. Nanoscale 8(19):9944–9961CrossRefGoogle Scholar
  43. Tao D, Kai S, Clays K, Tung CH (2009) Fabrication of 3D photonic crystals of ellipsoids: convective self-assembly in magnetic field. Adv Mater 21(19):1936–1940CrossRefGoogle Scholar
  44. Treml BE, Lukose B, Clancy P, Smilgies D, Hanrath T (2014) Connecting the particles in the box—controlled fusion of hexamer nanocrystal clusters within an ab6 binary nanocrystal superlattice. Sci Rep 4:6731CrossRefGoogle Scholar
  45. Urban JJ, Talapin DV, Shevchenko EV, Kagan CR, Murray CB (2007) Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2 Te thin films. Nat Mater 6(2):115–121CrossRefGoogle Scholar
  46. Wan Y, Goubet N, Albouy PA, Schaeffer N, Pileni MP (2013a) Hierarchy in Au nanocrystal ordering in a supracrystal: II. Control of interparticle distances. Langmuir Acs J Surf Coll 29(44):13576–13581CrossRefGoogle Scholar
  47. Wan Y, Portalès H, Goubet N, Mermet A, Pileni MP (2013b) Impact of nanocrystallinity segregation on the growth and morphology of nanocrystal superlattices. Nano Res6(8): 611–618CrossRefGoogle Scholar
  48. Wang ZL (1998) Structural analysis of self-assembling nanocrystal superlattices. Adv Mater 10(1): 13–30.CrossRefGoogle Scholar
  49. Wei J, Schaeffer N, Pileni MP (2014) Ag nanocrystals: 1. Effect of ligands on plasmonic properties. J Phys Chem B 118(49):14070–14075.CrossRefGoogle Scholar
  50. Wei J, Schaeffer N, Pileni MP (2015) Ligand exchange governs the crystal structures in binary nanocrystal superlattices. J Am Chem Soc 137(46):14773CrossRefGoogle Scholar
  51. Yan C, Wang T (2017) A new view for nanoparticle assemblies: from crystalline to binary cooperative complementarity. Chem Soc Rev 46(5):1483–1509CrossRefGoogle Scholar
  52. Yang Z, Wei J, Pileni MP (2015a) Metal-metal binary nanoparticle superlattices: a case study of mixing Co and Ag nanoparticles. Chem Mater 27(6):150309142008009Google Scholar
  53. Yang Z, Wei J, Bonville P, Pileni MP (2015b) Engineering the magnetic dipolar interactions in 3D binary supracrystals via mesoscale alloying. Adv Func Mater 25(30):4908–4915CrossRefGoogle Scholar
  54. Ye X, Chen J, Murray CB (2011) Polymorphism in self-assembled AB6 binary nanocrystal superlattices. J Am Chem Soc 133(8):2613–2620CrossRefGoogle Scholar
  55. Ye X, Chen J, Diroll BT, Murray CB (2013) Tunable plasmonic coupling in self-assembled binary nanocrystal superlattices studied by correlated optical microspectrophotometry and electron microscopy. Nano Lett 13(3):1291–1297CrossRefGoogle Scholar
  56. Ye X, Zhu C, Peter E, Raja SN, Bo H, Jones MR, Hauwiller MR, Yi L, Xu T, Paul AA (2015) Structural diversity in binary superlattices self-assembled from polymer-grafted nanocrystals. Nature Communications 6:10052CrossRefGoogle Scholar
  57. Zhuoying C, Jenny M, Guillaume R, Henning S, Stephen OB (2007) Binary nanoparticle superlattices in the semiconductor-semiconductor system: CdTe and CdSe. J Am Chem Soc 129(50):15702–15709CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2020

Authors and Affiliations

  1. 1.School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/Nano Materials and TechnologyYunnan UniversityKunmingChina

Personalised recommendations