Design of composite abrasives and substrate materials for chemical mechanical polishing applications

  • Fanning Meng
  • Zhenyu ZhangEmail author
  • Peili Gao
  • Tingting LiuEmail author
  • Yash Boyjoo
  • Dongming Guo
Review Article


Chemical mechanical polishing (CMP) has attracted much attention for high-performance manufacturing and setups, in which the surface roughness Ra is required to be less than 1 nm. In CMP, abrasives play a significant role in polishing quality and efficiency. Herein, we review the synthesis methods of abrasives including sSiO2@mSiO2, PS@CeO2, PS@SiO2 composites and their applications in CMP slurries. Then, the problems and solutions in CMP for soft- and hard-brittle solids and metals are presented in detail, such as cadmium zinc telluride (CdZnTe, soft brittle), silicon carbide (SiC, hard brittle) and copper (Cu, metal). After that, we summarize the molecular dynamics simulations of the CMP processes. Finally, the current problems of CMP and its development perspectives are discussed.


Chemical mechanical polishing Substrate materials Composite abrasives Molecular dynamics simulation Nanoparticle 



The authors acknowledge the financial support from the National Key R&D Program of China (2018YFA0703400), Excellent Young Scientists Fund of NSFC (51422502), Science Fund for Creative Research Groups of NSFC (51621064), Program for Creative Talents in University of Liaoning Province (LR2016006), Distinguished Young Scholars for Science and Technology of Dalian City (2016RJ05).


  1. Armini S, Whelan CM, Moinpour M, Maex K (2007) Composite polymer core-silica shell abrasives effect of polishing time and slurry solid content on oxide CMP. Electrochem Solid St 10(9):H243CrossRefGoogle Scholar
  2. Armini S, De Messemaeker J, Whelan CM, Moinpour M, Maex K (2008) Composite polymer core-ceria shell abrasive particles during oxide CMP: a defectivity study. J Electrochem Soc 155(9):H653CrossRefGoogle Scholar
  3. Babar S, Sellin PJ, Watts JF, Baker MA (2013) An XPS study of bromine in methanol etching and hydrogen peroxide passivation treatments for cadmium zinc telluride radiation detectors. Appl Surf Sci 264:681CrossRefGoogle Scholar
  4. Beaucamp A, Simon P, Charlton P, King C, Matsubara A, Wegener K (2017) Brittle-ductile transition in shape adaptive grinding (SAG) of SiC aspheric optics. Int J Mach Tool Manuf 115:29CrossRefGoogle Scholar
  5. Bengochea LV, Sampurno Y, Kavaljer M, Johnston R, Philipossian A (2018) Characterization of CMP slurries using densitometry and refractive index measurements. Micromachines 9(11):542CrossRefGoogle Scholar
  6. Bun-Athuek N, Takazaki H, Yoshimoto Y, Khajornrungruang P, Yasunaga T, Suzuki K (2018) Effects of mixed ultrafine colloidal silica particles on chemical mechanical polishing of sapphire. Jpn J Appl Phys 57(7):1Google Scholar
  7. Cai MB, Li XP, Rahman M (2007) Characteristics of “dynamic hard particles” in nanoscale ductile mode cutting of monocrystalline silicon with diamond tools in relation to tool groove wear. Wear 263:1459CrossRefGoogle Scholar
  8. Cao JG, Zhang QJ (2019) Material removal behavior in ultrasonic assisted grinding of SiC ceramics. Chin J Mech Eng-EN 55(13):205Google Scholar
  9. Chabi S, Rocha VG, Garcia-Tunon E, Ferraro C, Saiz E, Xia YD, Zhu YQ (2016) Ultralight, strong three dimensional SiC structures. Acs Nano 10(2):1871CrossRefGoogle Scholar
  10. Chandra A, Anderson G, Melkote S, Gao W, Haitjema H, Wegener K (2014) Role of surfaces and interfaces in solar cell manufacturing. CIRP Ann Manuf Technol 63(2):797CrossRefGoogle Scholar
  11. Chen Y, Long RW (2011) Polishing behavior of PS/CeO2 hybrid microspheres with controlled shell thickness on silicon dioxide CMP. Appl Surf Sci 257(20):8679CrossRefGoogle Scholar
  12. Chen Y, Lu JX, Chen ZG (2011) Preparation, characterization and oxide CMP performance of composite polystyrene-core ceria-shell abrasives. Microelectron Eng 88(2):200CrossRefGoogle Scholar
  13. Chen Y, Mu WB, Lu JX (2012) Young’s modulus of PS/CeO2 composite with core/shell structure microspheres measured using atomic force microscopy. J Nanopart Res 14:2Google Scholar
  14. Chen RL, Jiang RR, Lei H, Liang M (2013) Material removal mechanism during porous silica cluster impact on crystal silicon substrate studied by molecular dynamics simulation. Appl Surf Sci 264:148CrossRefGoogle Scholar
  15. Chen Y, Li ZN, Miao NM (2014a) Synergetic effect of organic cores and inorganic shells for core/shell structured composite abrasives for chemical mechanical planarization. Appl Surf Sci 314:180CrossRefGoogle Scholar
  16. Chen RL, Wu YH, Lei H, Jiang RR, Liang M (2014b) Study of material removal processes of the crystal silicon substrate covered by an oxide film under a silica cluster impact: molecular dynamics simulation. Appl Surf Sci 305:609CrossRefGoogle Scholar
  17. Chen Y, Wang YY, Qin JW, Chen AL (2015a) Core/shell structured solid-silica/mesoporous-silica microspheres as novel abrasives for chemical mechanical polishing. Tribol Lett 58:3CrossRefGoogle Scholar
  18. Chen AL, Chen Y, Ding JN (2015b) Polystyrene-core silica-shell composite abrasives: the influence of core size on oxide chemical mechanical planarization. J Electron Mater 44(7):2522CrossRefGoogle Scholar
  19. Chen Y, Qian C, Miao NM (2015c) Atomic force microscopy indentation to determine mechanical property for polystyrene–silica core–shell hybrid particles with controlled shell thickness. Thin Solid Films 579:57CrossRefGoogle Scholar
  20. Chen Y, Li ZN, Miao NM (2015d) Polymethylmethacrylate (PMMA)/CeO2 hybrid particles for enhanced chemical mechanical polishing performance. Tribol Int 82:211CrossRefGoogle Scholar
  21. Chen H, Guo D, Xie GX, Pan GS (2016a) Mechanical model of nanoparticles for material removal in chemical mechanical polishing process. Friction 4(2):153CrossRefGoogle Scholar
  22. Chen AL, Chen Y, Wang YY, Qin JW (2016b) Silica abrasives containing solid cores and mesoporous shells: synthesis, characterization and polishing behavior for SiO2 film. J Alloy Compd 663:60CrossRefGoogle Scholar
  23. Chen AL, Zhang ZF, Li XZ, Chen Y (2016c) Evaluation of oxide chemical mechanical polishing performance of polystyrene coated ceria hybrid abrasives. J Mater Sci-Mater El 27(3):2919CrossRefGoogle Scholar
  24. Chen AL, Qin JW, Li ZF, Chen Y (2017a) Engineering functionalized PS/mSiO2 composite particles with controlled meso-shell thickness for chemical mechanical planarization applications. J Mater Sci Mater Electron 28(1):284CrossRefGoogle Scholar
  25. Chen Y, Chen AL, Qin JW (2017b) Evaluation of the mechanical stability of core–shell structured polystyrene/mesoporous-silica (PS-mSiO2) composite particles. J Porous Mat 24(6):1667CrossRefGoogle Scholar
  26. Chen Y, Zuo CZ, Ma XY, Chen AL (2018a) Solid-silica core/mesoporous-silica shell composite abrasives: synthesis, characterization, and the effect of mesoporous shell structures on CMP. J Mater Sci Mater Electron 29(5):3817CrossRefGoogle Scholar
  27. Chen AL, Long JL, Li ZN, Chen Y (2018b) Copper chemical mechanical polishing performances of polystyrene/ceria hybrid abrasives with a core/shell structure. J Inogy Organomet Polym 28(4):1655CrossRefGoogle Scholar
  28. Chen RL, Li SX, Wang Z, Lu XC (2019) Mechanical model of single abrasive during chemical mechanical polishing: molecular dynamics simulation. Tribol Int 133:40CrossRefGoogle Scholar
  29. Cohen-Taguri G, Sinkevich O, Levinshtein M, Ruzin A, Goldfarb I (2010) Atomic structure and electrical properties of In(Te) nanocontacts on CdZnTe(110) by scanning probe microscopy. Adv Funct Mater 20(2):215CrossRefGoogle Scholar
  30. Deng H, Yamamura K (2013) Atomic-scale flattening mechanism of 4H-SiC (0001) in plasma assisted polishing. CIRP Ann 62(1):575CrossRefGoogle Scholar
  31. Deng H, Lin N, Endo K, Yamamura K (2018) Atomic-scale finishing of carbon face of single crystal SiC by combination of thermal oxidation pretreatment and slurry polishing. Appl Surf Sci 434:40CrossRefGoogle Scholar
  32. Duff MC, Hunter DB, Burger A, Groza M, Buliga V, Black DR (2008) Effect of surface preparation technique on the radiation detector performance of CdZnTe. Appl Surf Sci 254(9):2889CrossRefGoogle Scholar
  33. EI-Hofy MH, EI-Holy H (2019) Laser beam machining of carbon fiber reinforced composites: a review. Int J Adv Manuf Technol 101(9–12):2965CrossRefGoogle Scholar
  34. Fang TH, Li WL, Tao NR, Lu K (2011) Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331(6024):1587CrossRefGoogle Scholar
  35. Fischer D, Von Mankowski A, Ranft A, Vasa SK, Linser R, Mannhart J, Lotsch BV (2017) ZIF-8 films prepared by femtosecond pulsed-laser deposition. Chem Mater 29(12):5148CrossRefGoogle Scholar
  36. Fu YT, Risko C, Bredas JL (2013) Intermixing at the pentacene-fullerene bilayer interface: a molecular dynamics study. Adv Mater 25(6):878CrossRefGoogle Scholar
  37. Gao C, Wu RG, Wang S (2016) Grinding removal methods and quality control of SiC ceramic. Tool Eng 50:51Google Scholar
  38. Guo GQ, Liu ZQ, An QL, Chen M (2011) Experimental investigation on conventional grinding of Ti-6Al-4V using SiC abrasive. Int J Adv Manuf Tech 57(1–4):135CrossRefGoogle Scholar
  39. Guo XG, Li Q, Kang RK, Jin ZJ, Guo DM (2017) Advances in molecular dynamics simulation of ultra-precision machining of hard and brittle materials. Front Mech Eng-Prc 12(1):89CrossRefGoogle Scholar
  40. Guo XG, Wang XL, Jin ZJ, Kang RK (2018a) Atomistic mechanisms of Cu CMP in aqueous H2O2: molecular dynamics simulations using ReaxFF reactive force field. Comp Mater Sci 155:476CrossRefGoogle Scholar
  41. Guo XG, Yuan S, Wang XL, Jin ZJ, Kang RK (2018b) Atomistic mechanisms of chemical mechanical polishing of diamond (100)in aqueous H2O2/pure H2O: molecular dynamics simulations using reactive force field (ReaxFF). Comput Mater Sci 157:99CrossRefGoogle Scholar
  42. Hahn PO (2001) The 300 mm silicon wafer—a cost and technology challenge. Microelectron Eng 56(1–2):3CrossRefGoogle Scholar
  43. He H, Feng M, Hu J, Chen CX, Wang JQ, Wang XJ, Xu H, Lu JR (2012) Designed short RGD peptides for one-pot aqueous synthesis of integrin-binding CdTe and CdZnTe quantum dots. Acs Appl Mater Inter 4(11):6362CrossRefGoogle Scholar
  44. He XL, Chen YY, Zhao HJ, Sun HM, Lu XC, Liang H (2013) Y2O3 nanosheets as slurry abrasives for chemical-mechanical planarization of copper. Friction 1(4):327CrossRefGoogle Scholar
  45. He P, Wu BB, Shao S, Teng T, Wang P, Qu XP (2019) Characterization of 1,2,4-triazole as corrosion inhibitor for chemical mechanical polishing of cobalt in H2O2 based acid slurry. ECS J Solid State Sc 8(5):3075Google Scholar
  46. Honma T, Kawahara K, Suda S, Kinoshita K (2012) Development of SrZrO3/ZrO2 nano-composite abrasive for glass polishing. J Ceram Soc Jpn 120(1403):295CrossRefGoogle Scholar
  47. Hossain A, Bolotnikov AE, Camarda GS, Cui Y, Jones D, Hall J, Kim KH, Mwathi J, Tong X, Yang G, James RB (2014) Novel approach to surface processing for improving the efficiency of CdZnTe detectors. J Electron Mater 43(8):2771CrossRefGoogle Scholar
  48. Jung HK, Kim CH, Hong AR, Lee SH, Kim TC, Jang HS, Kim DH (2019) Luminescent and magnetic properties of cerium-doped yttrium aluminum garnet and yttrium iron garnet composites. Ceram Int 45(8):9846CrossRefGoogle Scholar
  49. Kawaguchi K, Ito H, Kuwahara T, Higuchi Y, Ozawa N, Kubo M (2016) Atomistic mechanisms of chemical mechanical polishing of a cu surface in aqueous H2O2: tight-binding quantum chemical molecular dynamics simulations. ACS Appl Mater Inter 8(18):11830CrossRefGoogle Scholar
  50. Khushnuma A, Mohd Q, Das D (2014) Effect of polishing parameters on chemical mechanical planarization of C-plane (0001) gallium nitride surface using SiO2 and Al2O3 abrasives. ECS J Solid State Sci 3(8):277CrossRefGoogle Scholar
  51. Lee PH, Lee SW (2011) Experimental characterization of micro-grinding process using compressed chilly air. Int J Mach Tool Manuf 51(3):201CrossRefGoogle Scholar
  52. Lee H, Lee D, Kim M, Jeong H (2017) Effect of mixing ratio of non-spherical particles in colloidal silica slurry on oxide CMP. Int J Precis Eng Manuf 18(10):1333CrossRefGoogle Scholar
  53. Lee CY, Mitchell DRG, Molino P, Fahy A, Wallace GG (2019) Tunable solution-processable anodic exfoliated graphene. Appl Mater Today 15:290CrossRefGoogle Scholar
  54. Lei H, Zhang PT (2007) Preparation of alumina/silica core-shell abrasives and their CMP behavior. Appl Surf Sci 253(21):8754CrossRefGoogle Scholar
  55. Li H, Lei H, Chen RL (2012) Preparation of porous Fe2O3/SiO2 nanocomposite abrasives and their chemical mechanical polishing behaviors on hard disk substrates. Thin Solis Films 520(19):6174CrossRefGoogle Scholar
  56. Liu J, Qiao SZ, Hartono SB, Lu GQ (2010) Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew Chem Int Edit 49(29):4981CrossRefGoogle Scholar
  57. Liu J, Qiao SZ, Liu H, Chen J, Orpe A, Zhao DY, Lu GQ (2011) Extension of the Stober method to the preparation of monodisperse resorcinol–formaldehyde resin polymer and carbon spheres. Angew Chem Int Edit 50:26Google Scholar
  58. Liu J, Yang TY, Wang DW, Lu GQ, Zhao DY, Qiao SZ (2013) A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nat Commun 4:2798CrossRefGoogle Scholar
  59. Liu LF, Zhang FH, Liu MH (2015) Ultrasonic assisted grinding for silicon carbide. Opt Precis Eng 23(8):2229CrossRefGoogle Scholar
  60. Lu J, Wang YG, Luo QF, Xu XP (2017) Photocatalysis assisting the mechanical polishing of a single-crystal SiC wafer utilizing an anatase TiO2-coated diamond abrasive. Precis Eng 32(10):1109Google Scholar
  61. Mahmoodi MJ, Vakilifard M (2019) Corrigendum to “Dynamic moduli and creep damping analysis of short carbon fiber reinforced polymer hybrid nanocomposite containing silica nanoparticle-on the nanoparticle size and volume fraction dependent aggregation”. Compos Part B-Eng 173:10629CrossRefGoogle Scholar
  62. Mandal S, Thomas ELH, Gines L, Morgan D, Green J, Brousseau EB, Williams OA (2018) Redox agent enhanced chemical mechanical polishing of thin film diamond. Carbon 130:25CrossRefGoogle Scholar
  63. Matovu JB, Ong P, Leunissen LHA, Krishnan S, Babu SV (2013) Use of multifunctional carboxylic acids and hydrogen peroxide to improve surface quality and minimize phosphine evolution during chemical mechanical polishing of indium phosphide surfaces. Ind Eng Chem Res 52(31):10664CrossRefGoogle Scholar
  64. Murata J, Yodogawa K, Ban K (2016) Polishing-pad-free electrochemical mechanical polishing of single crystalline SiC surfaces using polyurethane–CeO2 core–shell particles. Int J Mach Tool Manuf 114:1CrossRefGoogle Scholar
  65. Nagar M, Starosversky D, Vaes J, Ein-Eli Y (2010) Potassium sorbate as an inhibitor in copper chemical mechanical planarization slurry. Part I. Elucidating slurry chemistry. Electrochim Acta 55(10):3560CrossRefGoogle Scholar
  66. Ni ZF, Chen GM, Xu LJ, Bai YW, Li QZ, Zhao YW (2018) Effect of different oxidizers on chemical mechanical polishing of 6H-SiC. Chin J Mech Eng-EN 54(19):224CrossRefGoogle Scholar
  67. Oh MH, Nho JS, Cho SB (2010) Novel method to control the size of well-crystalline ceria particles by hydrothermal method. Mater Chem Phys 124(1):134CrossRefGoogle Scholar
  68. Osipov VV, Lukyashin KE, Shitov VA, Maksimov RN (2016) Two-step thermal diffusional bonding of transparent Nd:YAG ceramics. Mater Lett 167:81CrossRefGoogle Scholar
  69. Park C, Kim H, Lee S, Jeong H (2015) The influence of abrasive size on high-pressure chemical mechanical polishing of sapphire wafer. Nt J Pr Eng Man-GT 2(2):157Google Scholar
  70. Park YJ, Lee GH, Oh JS, Shin CS, Nam JS (2019) Efects of non-torque loads and carrier pinhole position errors on planet load sharing of wind turbine gearbox. Int J Pr Eng Man-GT 6(2):281Google Scholar
  71. Ponraj JS, Dhanabalan SC, Attolini G, Salviati G (2016) SiC nanostructures toward biomedical applications and its future challenges. Crit Rev Solid State 41(5):430CrossRefGoogle Scholar
  72. Rahman MA, Amrun MR, Rahman M, Kumar AS (2016) Variation of surface generation mechanisms in ultra-precision machining due to relative tool sharpness (RTS) and material properties. Int J Mach Tool Manuf 115:15CrossRefGoogle Scholar
  73. Roy UN, Bolotnikov Camarda GS, Cui Y, Hossian A, Lee K, Lee W, Tappero R, Yang G, Gul R (2015) High compositional homogeneity of CdTexSe1-x crystals grown by the Bridgman method. APL Mater 3:2CrossRefGoogle Scholar
  74. Sabia R, Stevens HJ (2000) Performance characterization of cerium oxide abrasives for chemical–mechanical polishing of glass. Mach Sci Technol 4(2):235CrossRefGoogle Scholar
  75. Sako H, Matsuhata H, Sasaki M, Nagaya M, Kido T, Kawata K, Kato T, Senzaki J, Kitabatake M, Okumura H (2016) Micro-structural analysis of local damage introduced in subsurface regions of 4H-SiC wafers during chemo-mechanical polishing. J Appl Phys 119(13):135702CrossRefGoogle Scholar
  76. Shan K, Zhou P, Cai JP, Kang RK, Shi K, Guo DM (2014) Electrogenerated chemical polishing of copper. Precis Eng 39:161CrossRefGoogle Scholar
  77. Shchukin DG, Caruso RA (2004) Template synthesis and photocatalytic properties of porous metal oxide spheres formed by nanoparticle infiltration. Chem Mater 16(11):2287CrossRefGoogle Scholar
  78. Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, de Heer WA (2010) Scalable templated growth of graphene nanoribbons on SiC. Nat Nanotechnol 5(10):727CrossRefGoogle Scholar
  79. Su JX, Guo DM, Kang RK, Jin ZJ, Li XJ, Tian YB (2004) Modeling and analyzing on nonuniformity of material removal in chemical mechanical polishing of silicon wafer. Metar Sci Forum 471:26CrossRefGoogle Scholar
  80. Wan C, Jin ZJ, Wu D, Liu ZT, Si LK (2018) Chemical mechanical planarization of copper sheet with high radius-thickness tatio. Diamond Abras Eng 38(3):81Google Scholar
  81. Wang WL, Liu WL, Bai LS, Song ZT, Huo JC (2017) Surface modified alumina particles and their chemical mechanical polishing (CMP) behavior on C-plane (0001) sapphire substrate. J Inorg Mater 32(10):1109CrossRefGoogle Scholar
  82. Wang HB, Yang J, Lu SB, Zhang ZX, Jiang XW, Wang FF, Fan M, Peng Y (2018a) Effect of particle hybrid on sapphire polishing performance. Lub Eng 43(6):43Google Scholar
  83. Wang ZQ, Ni J, Gao DR (2018b) Combined effect of the use of carbon fiber and seawater and the molecular structure on the tribological behavior of polymer materials. Friction 6(2):183CrossRefGoogle Scholar
  84. Wu BJ, Lin ML, Cong X, Lin HN, Tan PH (2018) Raman spectroscopy of graphene-based materials and its applications in related devices. Chem Soc Rev 47(5):1822CrossRefGoogle Scholar
  85. Xu YC, Lu J, Xu XP (2016) Study on planarization machining of sapphire wafer with soft-hard mixed abrasive through mechanical chemical polishing. Appl Surf Sci 389:713CrossRefGoogle Scholar
  86. Xu N, Han WZ, Wang YC, Li J, Shan ZW (2017) Nanoscratching of copper surface by CeO2. Acta Mater 124:343CrossRefGoogle Scholar
  87. Yin T, Doi T, Kurokawa S, Zhou ZZ, Feng KP (2018) Polishing characteristics of MnO2 polishing slurry on the Si-face of SiC wafer. Int J Precis Eng Manuf 19(12):1773CrossRefGoogle Scholar
  88. Yuan TJ, Zhang HL, Zhang GD (2012) Ultra-precision machining technology of silicon carbide substrates. Modern Manuf Eng 7:26Google Scholar
  89. Yuan ZW, Jin ZJ, Zhang YJ, Wen Q (2013) Chemical mechanical polishing slurries for chemically vapor-deposited diamond films. J Manuf Sci Eng 135:041006CrossRefGoogle Scholar
  90. Zhang ZF, Lei H (2008) Preparation of α-alumina/polymethacrylic acid composite abrasive and its CMP performance on glass substrate. Microelectron Eng 85(4):714CrossRefGoogle Scholar
  91. Zhang L, Wang HB, Zhang ZF, Qin F, Liu WL, Song ZT (2011) Preparation of monodisperse polystyrene/silica c core–shell nano-composite abrasive with controllable size and its chemical mechanical polishing performance on copper. Appl Surf Sci 258(3):1217CrossRefGoogle Scholar
  92. Zhang ZY, Xu CG, Zhang XZ, Guo DM (2012) Mechanical characteristics of nanocrystalline layers containing nanotwins induced by nanogrinding of soft-brittle CdZnTe single crystals. Scripta Mater 67(4):392CrossRefGoogle Scholar
  93. Zhang ZY, Wang B, Zhou P, Kang RK, Zhang B, Guo DM (2016) A novel approach of chemical mechanical polishing for cadmium zinc telluride wafers. Sci Ref UK 6:26891Google Scholar
  94. Zhang ZY, Cui JF, Zhang JB, Liu DD, Yu ZJ, Guo DM (2019) Environment friendly chemical mechanical polishing of copper. Appl Surf Sci 467:5CrossRefGoogle Scholar
  95. Zhao DW, Lu XC (2013) Chemical mechanical polishing: theory and experiment. Friction 1(4):306CrossRefGoogle Scholar
  96. Zhao XB, Long RW, Chen Y, Chen ZG (2010a) Synthesis, characterization of CeO2@SiO2 nanoparticles and their oxide CMP behavior. Microelectron Eng 87:1716CrossRefGoogle Scholar
  97. Zhao XB, Long RW, Chen Y, Chen ZG (2010b) Synthesis, characterization of CeO2@SiO2 nanoparticles and their oxide CMP behavior. Microelectron Eng 87(9):1716CrossRefGoogle Scholar
  98. Zhao G, Wang W, Bae TS, Lee SG, Mun C, Lee S, Yu HS, Lee GH, Song M, Yun J (2015) Stable ultrathin partially oxidized copper film electrode for highly efficient flexible solar cells. Nat Commun 2015:6Google Scholar
  99. Zheng Q, Dierre F, Crocco J, Carcelen V, Bensalah H, Plaza JL, Dieguez E (2011) Influence of surface preparation on CdZnTe nuclear radiation detectors. Appl Surf Sci 257(20):8742CrossRefGoogle Scholar
  100. Zhou Y, Pan GS, Shi XL, Xu L, Zou CL, Gong H, Luo GH (2014) XPS, UV–Vis spectroscopy and AFM studies on removal mechanisms of Si-face SiC wafer chemical mechanical polishing (CMP). Appl Surf Sci 316:643CrossRefGoogle Scholar
  101. Zhou Y, Pan GS, Shi XL, Zhang SM, Gong H, Luo GH (2015) Effects of ultra-smooth surface atomic step morphology on chemical mechanical polishing (CMP) performances of sapphire and SiC wafers. Tribol Int 87:145CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of EducationDalian University of TechnologyDalianChina
  2. 2.State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina

Personalised recommendations