Advertisement

Euphorbia milii extract-mediated zinc oxide nanoparticles and their antinociceptive, muscle relaxant, and sedative activities for pain management in pediatric children

  • Tong Shen
  • Qun Wang
  • Chengjun Liu
  • Fengfei Yu
  • Da Yu
  • Chengling LiEmail author
Original Article
  • 15 Downloads

Abstract

Nanotechnology has been recognized to have prospective future for improving therapy effectiveness and decreasing the undesirable impacts of herbal medicines. The utilization of several crops in conventional medicines has endorsed biological studies on Euphorbia species. It has been indicated that several Euphorbia species have powerful analgesic as well as sedative impacts. Zinc oxide nanoparticles prepared using Euphorbia milii aqueous extract (ZnO NPs-EM) have been produced, distinguished as well as evaluated for sedative, muscle relaxant, and antinociceptive activity in the current study. In comparison with the aqueous extract of E. milii, ZnO NPs developed an obvious antinociceptive impact at concentrations of 10 and 20 mg/kg. At a concentration of 20 and 10 mg/kg after 90, 60, and 30 min, ZnO NPs-EM displayed an important muscle relaxing impact in the rota-rod experiment. An important sedative impact (P < 0.05) of ZnO NPs-EM at 20 and 10 mg/kg was observed in an open-field experiment. These findings suggested that the ZnO NPs enhanced the effectiveness of the aqueous sample of E. milii, and showed important sedative, relaxing muscle, and analgesic characteristics.

Keywords

Pain management ZnO NPs Polyphenols 

Notes

References

  1. Ansari S, Farha IM (2012) Influence of nanotechnology on herbal drugs: a review. J Adv Pharm Technol Res 3:142–146CrossRefGoogle Scholar
  2. Arumugam CK, Karthikeyan C, Hameed ASH, Gopinath K, Gowri S, Karthika V (2015) Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater Sci Eng C 49:408–415CrossRefGoogle Scholar
  3. Azizi S, Ahmad MB, Namvar F, Mohamad R (2014) Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett 116:275–277CrossRefGoogle Scholar
  4. Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications Mater. Sci Semiconduct Process 32:55–61CrossRefGoogle Scholar
  5. Bonifácio BV, da Silva PB (2014) Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomed 9:1–15CrossRefGoogle Scholar
  6. Carp VD, Patrinoiu G, Tirsoaga A (2011) Green synthetic strategies of oxide materials: polysaccharides-assisted synthesis. Part IV. Alginate-assisted synthesis of nanosized metal-oxides. Rev Roum Chim 56:901–906Google Scholar
  7. Carpa TA, Jurca B, Ene R, Somacescu S, Ianculescu A (2015) Biopolymer starch mediated synthetic route of multi-spheres and donut ZnO structures. Carbohydr Polym 115:285–293CrossRefGoogle Scholar
  8. Csermely P, Agoston V, Pongor S (2005) The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci 26:178–182CrossRefGoogle Scholar
  9. Dey P, Chandra S, Chatterjee P, Bhattacharya S (2011) Neuropharmacological properties of Mikania scandens (L.) Willd. (Asteraceae). J Adv Pharm Technol Res 2:255–259CrossRefGoogle Scholar
  10. Dijken AV, Meulenkamp E, Vanmaekelbergh D, Meijerink A (2000) The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation. J Phys Chem B 104:1715–1723CrossRefGoogle Scholar
  11. Djurisic AB, Leung YH, Choy WCH, Cheah KW, Chan WK (2004) Visible photoluminescence in ZnO tetrapod and multipod structures. Appl Phys Lett 84:2635CrossRefGoogle Scholar
  12. Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Ashokkumar S (2015) Bio-fabrication of zinc oxide nanoparticles using leaf extract of curry leaf (Murraya koenigii) and its antimicrobial activities. Mater Sci Semiconduct Process 34:365–372CrossRefGoogle Scholar
  13. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS NanoNano 3:16–20CrossRefGoogle Scholar
  14. Goyal M, Nagori B, Sasmal D (2009) Sedative and anticonvulsant effects of an alcoholic extract of Capparis decidua. J Nat Med 63:375–379CrossRefGoogle Scholar
  15. Gunasekaran T, Haile T, Nigusse T, Dhanaraju MD (2014) Nanotechnology: an effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac J Trop Biomed 4(Suppl 1):S1–7CrossRefGoogle Scholar
  16. Jiang W, Kim BY, Rutka JT, Chan WC (2007) Advances and challenges of nanotechnology-based drug delivery systems. Expert Opin Drug Deliv 4:621–633CrossRefGoogle Scholar
  17. Lima SAM, Sigoli FA, Jafelicci M, Davolos MR (2001) Luminescent properties and lattice defects correlation on zinc oxide. Int J Inorg Mater 3:749–754CrossRefGoogle Scholar
  18. Maddinedi SB, Mandal BK (2014) A review on ‘Low-cost and eco-friendly green methods for graphene synthesis. Int J Nanosci Technol 3:2319–8796Google Scholar
  19. Maddinedi SB, Mandal BK, Maddili SK (2017a) Biofabrication of size controllable silver nanoparticles—a green approach. J Photochem Photobiol B 167:236–241CrossRefGoogle Scholar
  20. Maddinedi SB, Mandal BK, Anna KK (2017b) Environment friendly approach for size controllable synthesis of biocompatible Silver nanoparticles using diastase. Environ Toxicol Pharmacol 49:131–136CrossRefGoogle Scholar
  21. Maddinedi SB, Mandal BK, Anna KK (2017c) Tyrosine assisted size controlled synthesis of silver nanoparticles and their catalytic and in-vitro cytotoxicity evaluation. Environ Toxicol Pharmacol 51:23–29CrossRefGoogle Scholar
  22. Maddinedi SB, Mandal BK, Anna KK, Patel SH, Vaibhav Vilas A, Shivendu R, Nandita D (2017d) Diastase induced green synthesis of bilayered reduced graphene oxide and its decoration with gold nanoparticles. J Photochem Photobiol B 116:252–258CrossRefGoogle Scholar
  23. Maddinedi SB, Sonamuthu J, Yildiz SS, Han G, Cai Y, Gao J, Ni Q, Yao J (2018) Silk sericin induced fabrication of reduced graphene oxide and its in-vitro cytotoxicity, photothermal evaluation. J Photochem Photobiol B 186:189–196CrossRefGoogle Scholar
  24. Mariana CC, Alexandru MG, Valentina G, Eugenia B, Veronica L, Alexandra B (2014) Biomedical applications of natural polymers for drug delivery. Curr Org Chem 18:152–164CrossRefGoogle Scholar
  25. Matsumoto H, Naraba H, Ueno A, Fujiyoshi T, Murakami M, Kudo I, Oh-ishi S (1998) Induction of cyclooxygenase-2 causes an enhancement of writhing response in mice. Eur J Pharmacol 352:47–52CrossRefGoogle Scholar
  26. Muhammad N, Saeed M, Khan H (2012) Antipyretic, analgesic and antiinflammatory activity of Viola betonicifolia whole plant. BMC Compl Altern Med 12:59–66CrossRefGoogle Scholar
  27. Muhammad N, Saeed M, Khan H, Haq I (2013) Evaluation of n-hexane extract of Viola betonicifolia for its neuropharmacological properties. J Nat Med 67:1–8CrossRefGoogle Scholar
  28. Nagajyothi PC, Sreekanth TVM, Tettey CO, Jun YI, Mook SH (2014) Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis Rhizoma. Bioorgan Med Chem Lett 24:4298–4303CrossRefGoogle Scholar
  29. Parra MR, Haque FZ (2014) Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles. J Mater Res Technol 3:363–369CrossRefGoogle Scholar
  30. Kaur R, Jaggi AS, Singh N (2010) Studies on ešect of stress preconditioning in restrain stress-induced behavioral alterations. Yakugaku Zasshi Zasshi 130:215–221CrossRefGoogle Scholar
  31. Rauf MN, Qaisar M, Uddin G, Hussain I (2012) Preliminary antinociceptive studies of methanol extract of Euphorbiamilli. Middle-East J Med Plants Res 1:68–70Google Scholar
  32. Sadeghi B, Rostami A, Momeni SS (2015) Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochim Acta Part A Mol Biomol Spectrosc 134:326–332CrossRefGoogle Scholar
  33. Salam HA, Sivaraj R, Venckatesh R (2014) Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-Lamiaceae leaf extract. Mater Lett 131:16–18CrossRefGoogle Scholar
  34. Vanheusden K, Warren WL, Seager CH, Tallant DR, Voigt JA, Gnade BE (1996) Mechanisms behind green photoluminescence in ZnO phosphor powders. J Appl Phys 79:7983CrossRefGoogle Scholar
  35. Xiao-ying T, Liu L (2012) Drug discovery enters a new era with multi-target intervention strategy. Chin J Integr Med 18:539–542CrossRefGoogle Scholar
  36. Xu X, Chen D, Yi Z, Jiang M, Wang L, Zhou Z, Fan X, Wang Y, Hui D (2013) Antimicrobial mechanism based on H2O2 generation at oxygen vacancies in ZnO crystals. Langmuir 29:5573–5580CrossRefGoogle Scholar
  37. Yuvakkumar R, Suresh J, Joseph Nathanael A, Sundrarajan M, Hong SI (2014) Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Mater Sci Eng C 41:17–27CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • Tong Shen
    • 1
  • Qun Wang
    • 1
  • Chengjun Liu
    • 1
  • Fengfei Yu
    • 1
  • Da Yu
    • 1
  • Chengling Li
    • 1
    Email author
  1. 1.Department of PediatricsLinyi Central HospitalYishuiChina

Personalised recommendations