Advertisement

Synthesis and catalytic practicality of titania@ITO-grown nanoflakes: an excellent candidate for isopropanol conversion to acetone

  • Abdul Hameed Pato
  • Aamna BalouchEmail author
  • Farah Naz Talpur
  • Abdullah
  • Ali Muhammad Mahar
  • Muhammad Tariq Shah
  • Ameet Kumar
  • Fahad
  • Sana Qasim
  • Asif Ali Gabole
Original Article
  • 6 Downloads

Abstract

Highly effective, remarkable and discerning isopropanol conversion to acetone has been achieved by a heterogeneous catalytic transfer oxidative hydrogenation of isopropanol using NaBH4 in the presence of active titanium oxide nanoflakes (TiO2 NFs) grown over ITO substrate for the first time followed by liquid-phase deposition protocol. Various sophisticated techniques were employed for the confirmation of well-shaped novel anatase nanoflakes, having small size and thickness of 5–10 and 30 nm, respectively, consequently providing high surface area and greater density active sites enable the particles to be extremely active for the catalytic reaction. These exceedingly active nanoflakes proved to be good candidate showing remarkably high heterogeneous catalytic efficiency by converting approximately 100% isopropanol to acetone within 40 s using 0.5 mg TiO2 NFs deposited over ITO surface. Various parameters are optimized, e.g., time, dose, concentration of reducing agent and isopropanol for this rapid and effective conversion. These synthesized nanoflakes are of finest choice in terms of cheapest source, high catalytic efficiency, exceptional reusability and good analytical practicality with maximum yield in very short time.

Keywords

Indium tin oxide (ITO) Liquid-phase deposition protocol Catalytic transfer oxidative hydrogenation Nanoflakes Heterogeneous catalyst 

Notes

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

References

  1. Akhtar MS, Umar A, Sood S, Jung I, Hegazy H, Algarni H (2019) Rapid growth of TiO2 nanoflowers via low-temperature solution process: photovoltaic and sensing applications. Materials 12:566CrossRefGoogle Scholar
  2. Al-Enizi AM, Brooks RM, Ahmad M, El-Halwany M, El-Newehy MH, Yousef A (2018) In-situ synthesis of amorphous co nanoparticles supported onto TiO2 nanofibers as a catalyst for hydrogen generation from the hydrolysis of ammonia borane. J Nanosci Nanotechnol 18:4714–4719CrossRefGoogle Scholar
  3. Ashour SS (2014) Structural, textural and catalytic properties of pure and Li-doped NiO/Al2O3 and CuO/Al2O3 catalysts. J Saudi Chem Soc 18:69–76CrossRefGoogle Scholar
  4. Balouch A, Ali Umar A, Shah AA, Mat Salleh M, Oyama M (2013) Efficient heterogeneous catalytic hydrogenation of acetone to isopropanol on semihollow and porous palladium nanocatalyst. ACS Appl Mater Interfaces 5:9843–9849CrossRefGoogle Scholar
  5. Bermejo LL, Welker NE, Papoutsakis ET (1998) Expression of Clostridium acetobutylicum ATCC 824 genes in escherichia coli for acetone production and acetate detoxification. Appl Environ Microbiol 64:1079–1085Google Scholar
  6. Brown S, El-Shall H, Lee YY (2017) A one-step approach to the synthesis of high aspect ratio titania nanoflakes. Glob Chall 1:1700060CrossRefGoogle Scholar
  7. Cao D, Bergens SH (2003) A direct 2-propanol polymer electrolyte fuel cell. J Power Sources 124:12–17CrossRefGoogle Scholar
  8. Cheng H, Liu S, Hu C, Wang H (2018) Electro-copolymerization of symmetric flower-like luminol aniline-hollow TiO2–NH2 nano-shell polymer in ionic liquid for acetochlor detection. Int J Electrochem Sci 13:4182–4197CrossRefGoogle Scholar
  9. Deraz N, Al-Arifi A (2010) Preparation and physicochemical properties of individual and binary Ni and Ce oxides system. Polyhedron 29:3277–3282CrossRefGoogle Scholar
  10. Deyab M, Nada AA, Hamdy A (2017) Comparative study on the corrosion and mechanical properties of nano-composite coatings incorporated with TiO2 nano-particles, TiO2 nano-tubes, and ZnO nano-flowers. Prog Org Coat 105:245–251CrossRefGoogle Scholar
  11. Dhandayuthapani T, Sivakumar R, Ilangovan R, Gopalakrishnan C, Sanjeeviraja C, Sivanantharaja A (2017) High coloration efficiency, high reversibility and fast switching response of nebulized spray deposited anatase TiO2 thin films for electrochromic applications. Electrochim Acta 255:358–368CrossRefGoogle Scholar
  12. Diab KR, El-Maghrabi HH, Nada AA, Youssef AM, Hamdy A, Roualdes S, El-Wahab SA (2018) Facile fabrication of NiTiO3/graphene nanocomposites for photocatalytic hydrogen generation. J Photochem Photobiol A 365:86–93CrossRefGoogle Scholar
  13. Ding W, Song C, Li T, Ma H, Yao Y, Yao C (2019) TiO2 nanowires as an effective sensing platform for rapid fluorescence detection of single-stranded DNA and double-stranded DNA. Talanta 199:442–448CrossRefGoogle Scholar
  14. Dong Y, Ji X, Laaksonen A, Cao W, An R, Lu L, Lu X (2019) Determination of the small amount of proteins interacting with TiO2 nanotubes by AFM-measurement. Biomaterials 192:368–376CrossRefGoogle Scholar
  15. Du C, Wu J, Yang P, Li S, Xu J, Song K (2019) Embedding S@ TiO2 nanospheres into MXene layers as high rate cyclability cathodes for lithium-sulfur batteries. Electrochim Acta 295:1067–1074CrossRefGoogle Scholar
  16. Dubrovinskaia NA, Dubrovinsky LS, Ahuja R, Prokopenko VB, Dmitriev V, Weber H-P, Osorio-Guillen J, Johansson B (2001) Experimental and theoretical identification of a new high-pressure TiO2 polymorph. Phys Rev Lett 87:275501CrossRefGoogle Scholar
  17. El-Maghrabi HH, Barhoum A, Nada AA, Moustafa YM, Seliman SM, Youssef AM, Bechelany M (2018a) Synthesis of mesoporous core-shell CdS@ TiO2 (0D and 1D) photocatalysts for solar-driven hydrogen fuel production. J Photochem Photobiol A 351:261–270CrossRefGoogle Scholar
  18. El-Maghrabi H, Al-Kahlawy A, Nada AA, Zaki T (2018b) Photocorrosion resistant Ag2CO3@ Fe2O3/TiO2-NT nanocomposite for efficient visible light photocatalytic degradation activities. J Hazard Mater 360:250–256CrossRefGoogle Scholar
  19. El-Molla S, Abdel-all S, Ibrahim M (2009) Influence of precursor of MgO and preparation conditions on the catalytic dehydrogenation of iso-propanol over CuO/MgO catalysts. J Alloy Compd 484:280–285CrossRefGoogle Scholar
  20. El-Molla SA, El-Shobaky GA, Amin NH, Hammed MN, Sultan SN (2013) Catalytic properties of pure and K+ -doped CuO/MgO system towards 2-propanol conversion. J Mex Chem Soc 57:36–42Google Scholar
  21. Gao C, Zhen D, He N, An Z, Zhou Q, Li C, Grimes CA, Cai Q (2019) Two-dimensional TiO2 nanoflakes enable rapid SALDI-TOF-MS detection of toxic small molecules (dyes and their metabolites) in complex environments. Talanta 196:1–8CrossRefGoogle Scholar
  22. Gopal NO, Basha MH (2018) TiO2 nano-flakes with high activity obtained from phosphorus doped TiO2 nanoparticles by hydrothermal method. Ceram Int 44:22129–22134CrossRefGoogle Scholar
  23. Jiang X, Wang Y, Herricks T, Xia Y (2004) Ethylene glycol-mediated synthesis of metal oxide nanowires. J Mater Chem 14:695–703CrossRefGoogle Scholar
  24. Joseph S, Boby SJM, Nathan DMGT, Sagayaraj P (2017) Investigation on the role of cost effective cathode materials for fabrication of efficient DSSCs with TiNT/TiO2 nanocomposite photoanodes. Sol Energy Mater Sol Cells 165:72–81CrossRefGoogle Scholar
  25. Kalwar NH, Sherazi STH, Abro MI, Tagar ZA, Hassan SS, Junejo Y, Khattak MI (2011) Synthesis of l-methionine stabilized nickel nanowires and their application for catalytic oxidative transfer hydrogenation of isopropanol. Appl Catal A 400:215–220CrossRefGoogle Scholar
  26. Kalwar NH, Nafady A, Soomro RA, Sherazi STH, Khaskheli AR, Hallam KR (2015) Microwave-assisted synthesis of l-cysteine-capped nickel nanoparticles for catalytic reduction of 4-nitrophenol. Rare Met 34:683–691CrossRefGoogle Scholar
  27. Khan R, Javed S, Islam M (2018) Hierarchical Nanostructures of titanium dioxide: synthesis and applications. In: titanium dioxide-material for a sustainable environment, IntechOpenGoogle Scholar
  28. Krishna DL, Woo BJ, Hyun LD, Su KJ (2018) Hierarchical Ag/TiO2/Si forest-like nano/micro-architectures as antireflective, plasmonic photocatalytic, and self-cleaning coatings. ACS Sustain Chem Eng 6:1580–1591CrossRefGoogle Scholar
  29. Mawarnis ER, AliUmar A, Tomitori M, Balouch A, Nurdin M, Muzakkar MZ, Oyama M (2018) Hierarchical bimetallic AgPt nanoferns as high-performance catalysts for selective acetone hydrogenation to isopropanol. ACS Omega 3:11526–11536CrossRefGoogle Scholar
  30. Mo L, Zheng H (2019) Growth of MnO2 nanoflakes on TiO2 nanorods for pseudocapacitor. J Alloys Compd 788:1162–1168CrossRefGoogle Scholar
  31. Moshtaghi S, Zinatloo-Ajabshir S, Salavati-Niasari M (2016) Preparation and characterization of BaSnO3 nanostructures via a new simple surfactant-free route. J Mater Sci Mater Electron 27:425–435CrossRefGoogle Scholar
  32. Nada AA, Nasr M, Viter R, Miele P, Roualdes SP, Bechelany M (2017) Mesoporous ZnFe2O4@TiO2 nanofibers prepared by electrospinning coupled to PECVD as highly performing photocatalytic materials. J Phys Chem C 121:24669–24677CrossRefGoogle Scholar
  33. Nada AA, Tantawy HR, Elsayed MA, Bechelany M, Elmowafy ME (2018) Elaboration of nano titania-magnetic reduced graphene oxide for degradation of tartrazine dye in aqueous solution. Solid State Sci 78:116–125CrossRefGoogle Scholar
  34. Nada AA, Bekheet MF, Viter R, Miele P, Roualdes S, Bechelany M (2019a) BN/GdxTi (1−x) O (4−x)/2 nanofibers for enhanced photocatalytic hydrogen production under visible light. Appl Catal B 251:76–86CrossRefGoogle Scholar
  35. Nada AA, Bekheet MF, Roualdes S, Gurlo A, Ayral A (2019b) Functionalization of MCM-41 with titanium oxynitride deposited via PECVD for enhanced removal of methylene blue. J Mol Liq 274:505–515CrossRefGoogle Scholar
  36. Patidar V, Jain P (2017) Green synthesis of TiO2 nanoparticle using Moringa oleifera leaf extract. Int Res J Eng Technol 4:470–473Google Scholar
  37. Patil RA, Devan RS, Liou Y, Ma Y-R (2016) Efficient electrochromic smart windows of one-dimensional pure brookite TiO2 nanoneedles. Sol Energy Mater Sol Cells 147:240–245CrossRefGoogle Scholar
  38. Qu Z, Yu Q, Brouwers H (2019) Effect of LDH nano-flakes on the mechanical and transport properties of lightweight concrete. Serv Life Durabil Reinforced Concrete Struct 2019:3CrossRefGoogle Scholar
  39. Rad TS, Khataee A, Kayan B, Kalderis D, Akay S (2018) Synthesis of pumice-TiO2 nanoflakes for sonocatalytic degradation of famotidine. J Clean Prod 202:853–862CrossRefGoogle Scholar
  40. Razali MH, Noor AFM, Yusoff M (2017) Hydrothermal synthesis and characterization of Cu2 +/F–Co-doped titanium dioxide (TiO2) nanotubes as photocatalyst for methyl orange degradation. Sci Adv Mater 9:1032–1041CrossRefGoogle Scholar
  41. Said AE-AA, El-Wahab MMA, Goda MN (2016) Selective synthesis of acetone from isopropyl alcohol over active and stable CuO–NiO nanocomposites at relatively low-temperature. Egypt J Basic Appl Sci 3:357–365CrossRefGoogle Scholar
  42. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986CrossRefGoogle Scholar
  43. Sepehr MN, Sivasankar V, Zarrabi M, Kumar MS (2013) Surface modification of pumice enhancing its fluoride adsorption capacity: an insight into kinetic and thermodynamic studies. Chem Eng J 228:192–204CrossRefGoogle Scholar
  44. Shah AA (2016) Synthesis of novel nano-strawberry TiO2 structures with the aid of microwave inverter system: growth time effect on optical absorption intensity. KnE Eng 1:2016CrossRefGoogle Scholar
  45. Shah MT, Balouch A, Rajar K, Brohi IA, Umar AA (2015) Selective heterogeneous catalytic hydrogenation of ketone (C2O) to alcohol (OH) by magnetite nanoparticles following Langmuir-Hinshelwood kinetic approach. ACS Appl Mater Interfaces 7:6480–6489CrossRefGoogle Scholar
  46. Shaheen W, Zahran A, El-Shobaky G (2003) Surface and catalytic properties of NiO/MgO system doped with Fe2O3. Colloids Surf A 231:51–65CrossRefGoogle Scholar
  47. Shen J, Hu W, Li Y, Li L, Lv X-J, Zhang L (2017) Fabrication of free-standing N-doped carbon/TiO2 hierarchical nanofiber films and their application in lithium and sodium storages. J Alloy Compd 701:372–379CrossRefGoogle Scholar
  48. Verma R, Awasthi A, Singh P, Srivastava R, Sheng H, Wen J, Miller DJ, Srivastava AK (2016) Interactions of titania based nanoparticles with silica and green-tea: photo-degradation and-luminescence. J Colloid Interface Sci 475:82–95CrossRefGoogle Scholar
  49. Wang D, Yu R, Kumada N, Kinomura N (1999) Hydrothermal synthesis and characterization of a novel one-dimensional titanium glycolate complex single crystal: Ti (OCH2CH2O) 2. Chem Mater 11:2008–2012CrossRefGoogle Scholar
  50. Wang Y, Xue X, Liu P, Wang C, Yi X, Hu Y, Ma L, Zhu G, Chen R, Chen T (2018) Atomic substitution enabled synthesis of vacancy-rich two-dimensional black TiO2–x nanoflakes for high-performance rechargeable magnesium batteries. ACS Nano 12:12492–12502CrossRefGoogle Scholar
  51. Wu W-Q, Xu Y-F, Rao H-S, Su C-Y, Kuang D-B (2014) Multistack integration of three-dimensional hyperbranched anatase titania architectures for high-efficiency dye-sensitized solar cells. J Am Chem Soc 136:6437–6445CrossRefGoogle Scholar
  52. Zhan F, Liu W, Li H, Yang Y, Wang M (2018) Ce-doped CdS quantum dot sensitized TiO2 nanorod films with enhanced visible-light photoelectrochemical properties. Appl Surf Sci 455:476–483CrossRefGoogle Scholar
  53. Zhu K, Sun Y, Wang R, Shan Z, Liu K (2017) Fast synthesis of uniform mesoporous titania submicrospheres with high tap densities for high-volumetric performance Li-ion batteries. Sci China Mater 60:304–314CrossRefGoogle Scholar
  54. Zinatloo-Ajabshir S, Salavati-Niasari M (2015a) Nanocrystalline Pr6O11: synthesis, characterization, optical and photocatalytic properties. New J Chem 39:3948–3955CrossRefGoogle Scholar
  55. Zinatloo-Ajabshir S, Salavati-Niasari M (2015b) Novel poly (ethyleneglycol)-assisted synthesis of praseodymium oxide nanostructures via a facile precipitation route. Ceram Int 41:567–575CrossRefGoogle Scholar
  56. Zinatloo-Ajabshir S, Salavati-Niasari M (2015c) Preparation and characterization of nanocrystalline praseodymium oxide via a simple precipitation approach. J Mater Sci Mater Electron 26:5812–5821CrossRefGoogle Scholar
  57. Zinatloo-Ajabshir S, Salavati-Niasari M (2016a) Preparation of nanocrystalline cubic ZrO2 with different shapes via a simple precipitation approach. J Mater Sci: Mater Electron 27:3918–3928Google Scholar
  58. Zinatloo-Ajabshir S, Salavati-Niasari M (2016b) Zirconia nanostructures: novel facile surfactant-free preparation and characterization. Int J Appl Ceram Technol 13:108–115CrossRefGoogle Scholar
  59. Zinatloo-Ajabshir S, Salavati-Niasari M, Hamadanian M (2015) Praseodymium oxide nanostructures: novel solvent-less preparation, characterization and investigation of their optical and photocatalytic properties. RSC Adv 5:33792–33800CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • Abdul Hameed Pato
    • 1
  • Aamna Balouch
    • 1
    Email author
  • Farah Naz Talpur
    • 1
  • Abdullah
    • 1
  • Ali Muhammad Mahar
    • 1
  • Muhammad Tariq Shah
    • 1
  • Ameet Kumar
    • 1
  • Fahad
    • 1
  • Sana Qasim
    • 1
  • Asif Ali Gabole
    • 1
  1. 1.National Centre of Excellence in Analytical ChemistryUniversity of SindhJamshoroPakistan

Personalised recommendations