Facile synthesis of Zn3(VO4)2/FeVO4 heterojunction and study on its photocatalytic and electrochemical properties

  • Muhammad Munir SajidEmail author
  • Naveed Akthar Shad
  • Yasir Javed
  • Sadaf Bashir Khan
  • Nasir AminEmail author
  • Zhengjun Zhang
  • Zahid Imran
  • Muhammad Imran Yousuf
Original Article


First time, a novel Zn3(VO4)2/FeVO4 heterojunction nanophotocatalyst has been prepared using the slightly modified hydrothermal method by varying precursor ratios of iron and zinc salts. The physio-chemical characterizations of as-prepared nanocomposites were carried out by XRD, FESEM, EDS, XPS, BET, UV–Vis, PL, CV and EIS. Effect of molar ratio showed that Zn3(VO4)2/FeVO4 nanocomposite with molar ratio 1:1 exhibited excellent photocatalytic activity than pure single Zn3(VO4)2 and FeVO4 photocatalysts by completely degrading the Rhodamine-B (Rh-B) dye solution at pH-3. The Zn3(VO4)2/FeVO4 composite was also used for the electrochemical identification of ascorbic acid and glucose. This study provides first-hand information about the potential of vanadate-based nanocomposites for the photocatalytic degradation of organic pollutants and electrochemical sensing of various analytes.


Vanadate nanocomposites Crystal structure Phase transformations Hydrothermal method Rhodamine-B (Rh-B) Photocatalysis 



The authors are grateful to Dr. Zhengjun Zhang, Tsinghua University, Beijing, China for supporting characterization techniques and keen interest.


The authors did not receive financial support for this work from any agency.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ali A, Oh W-C (2017) J Korean Ceram Soc 54:388–394CrossRefGoogle Scholar
  2. Alloyeau D, Mottet C, Ricolleau C (2012) Nanoalloys: Synthesis; structure and properties. Springer Science & Business Media, New YorkCrossRefGoogle Scholar
  3. Andreozzi R, Caprio V, Insola A, Marotta R (1999) Catal Today 53:51–59CrossRefGoogle Scholar
  4. Baojun M, Keying L, Weiguang S, Wanyi L (2014) Appl Surf Sci 317:682–687CrossRefGoogle Scholar
  5. Beltrán A, Gracia L, Andrés J, Longo E (2017) J Phys Chem C 121:27624–27642CrossRefGoogle Scholar
  6. Biswas SK, Baeg J-O (2013) Int J Hydrogen Energy 38:14451–14457CrossRefGoogle Scholar
  7. Bondarenka V, Grebinskij S, Kaciulis S, Mattogno G, Mickevicius S, Tvardauskas H, Volkov V, Zakharova G (2001) J Electron Spectrosc Relat Phenom 120:131–135CrossRefGoogle Scholar
  8. Chaiwichian S, Inceesungvorn B, Wetchakun K, Phanichphant S, Kangwansupamonkon W, Wetchakun N (2014) Mater Res Bull 54:28–33CrossRefGoogle Scholar
  9. Chang X, Yu G, Huang J, Li Z, Zhu S, Yu P, Cheng C, Deng S, Ji G (2010) Catal Today 153:193–199CrossRefGoogle Scholar
  10. Chen S, Zhang S, Zhao W, Liu W (2009) J Nanopart Res 11:931–938CrossRefGoogle Scholar
  11. Chou S-Y, Chung W-H, Chen L-W, Dai Y-M, Lin W-Y, Lin J-H, Chen C-C (2016) RSC Adv 6:82743–82758CrossRefGoogle Scholar
  12. Chung DY, Jun SW, Yoon G, Kim H, Yoo JM, Lee K-S, Kim T, Shin H, Sinha AK, Kwon SG (2017) J Am Chem Soc 139:6669–6674CrossRefGoogle Scholar
  13. Dai G, Yu J, Liu G (2011) J Phys Chem C 115:7339–7346CrossRefGoogle Scholar
  14. Dandapat A, De G (2011) ACS Appl Mater Interfaces 4:228–234CrossRefGoogle Scholar
  15. Du Y, Khan S, Zhang X, Yu G, Liu R, Zheng B, Nadimicherla R, Wu D, Fu R (2019) Carbon 149:144–151CrossRefGoogle Scholar
  16. Fatima S, Ali SI, Iqbal MZ, Rizwan S (2017) RSC Adv 7:35928–35937CrossRefGoogle Scholar
  17. Gao X, Wu HB, Zheng L, Zhong Y, Hu Y, Lou XWD (2014) Angew Chem 126:6027–6031CrossRefGoogle Scholar
  18. Guan M-L, Ma D-K, Hu S-W, Chen Y-J, Huang S-M (2010) Inorg Chem 50:800–805CrossRefGoogle Scholar
  19. Hng HH, Knowles KM (1999) J Eur Ceram Soc 19:721–726CrossRefGoogle Scholar
  20. Imam SS, Zango ZU, Abdullahi H (2018) Am Sci Res J Eng Technol Sci 41:26–39Google Scholar
  21. Irfan S, Li L, Saleemi AS, Nan C-W (2017a) J Mater Chem A 5:11143–11151CrossRefGoogle Scholar
  22. Irfan S, Shen Y, Rizwan S, Wang HC, Khan SB, Nan CW (2017b) J Am Ceram Soc 100:31–40CrossRefGoogle Scholar
  23. Iwashita N (2016) Chapter 2—X-ray powder diffraction. In: Inagaki M, Kang F (eds) Materials science and engineering of carbon. Butterworth-Heinemann, Oxford, pp 7–25Google Scholar
  24. Ji Y, Cao J, Jiang L, Zhang Y, Yi Z (2014) J Alloy Compd 590:9–14CrossRefGoogle Scholar
  25. Jiang H-Q, Endo H, Natori H, Nagai M, Kobayashi K (2009) Mater Res Bull 44:700–706CrossRefGoogle Scholar
  26. Jiang Y-R, Lin H-P, Chung W-H, Dai Y-M, Lin W-Y, Chen C-C (2015) J Hazard Mater 283:787–805CrossRefGoogle Scholar
  27. Jiang Y, Liu P, Tian S, Liu Y, Peng Z, Li F, Ni L, Liu Z (2017) J Taiwan Inst Chem Eng 78:517–529CrossRefGoogle Scholar
  28. Kang S, Zhang L, Liu C, Huang L, Shi H, Cui L (2017) Int J Electrochem Sci 12:5284–5293CrossRefGoogle Scholar
  29. Karamat S, Rawat R, Lee P, Tan T, Ramanujan R, Zhou W (2010) Appl Surf Sci 256:2309–2314CrossRefGoogle Scholar
  30. Khan SB, Hou M, Shuang S, Zhang Z (2017) Appl Surf Sci 400:184–193CrossRefGoogle Scholar
  31. Khan MYA, Zahoor M, Shaheen A, Jamil N, Arshad MI, Bajwa SZ, Shad NA, Butt R, Ali I, Iqbal MZ (2018) Mater Res Bull 104:38–43CrossRefGoogle Scholar
  32. Leng K, Mai W, Zhang X, Liu R, Lin X, Huang J, Lou H, Xie Y, Fu R, Wu D (2018) Chem Commun 54:7159–7162CrossRefGoogle Scholar
  33. Li J, Zhao W, Guo Y, Wei Z, Han M, He H, Yang S, Sun C (2015) Appl Surf Sci 351:270–279CrossRefGoogle Scholar
  34. Liu CJ, Xu YH (2011) Adv Mater Res Trans Tech Publ 148:1469–1472Google Scholar
  35. Liu Z, Sun DD, Guo P, Leckie JO (2007) Nano Lett 7:1081–1085CrossRefGoogle Scholar
  36. Liu X, Cao H, Yin J (2011) Nano Res 4:470–482CrossRefGoogle Scholar
  37. Liu M, Xue X, Yu S, Wang X, Hu X, Tian H, Chen H, Zheng W (2017) Sci Rep 7:3637CrossRefGoogle Scholar
  38. Ma H, Yang X, Tao Z, Liang J, Chen J (2011) CrystEngComm 13:897–901CrossRefGoogle Scholar
  39. Mendialdua J, Casanova R, Barbaux Y (1995) J Electron Spectrosc Relat Phenom 71:249–261CrossRefGoogle Scholar
  40. Moscow S, Jothivenkatachalam K, Jaganathan K (2012) Struct Opt Study Titan Dioxide Thin Films Prep Sol-Gel Tech 24:46Google Scholar
  41. Owusu PA, Asumadu-Sarkodie S (2016) Cogent Eng 3:1167990Google Scholar
  42. Pei L, Lin N, Wei T, Liu H, Yu H (2015) J Mater Chem A 3:2690–2700CrossRefGoogle Scholar
  43. Sajid MM, Khan SB, Shad NA, Amin N, Zhang Z (2018a) RSC Adv 8:23489–23498CrossRefGoogle Scholar
  44. Sajid MM, Khan SB, Shad NA, Amin N (2018b) RSC Advances 8:35403–35412CrossRefGoogle Scholar
  45. Sajid MM, Amin N, Shad NA, Javed Y, Zhang Z (2019a) Mater Sci Eng, B 242:83–89CrossRefGoogle Scholar
  46. Sajid MM, Shad NA, Khan SB, Zhang Z, Amin N (2019b) J Alloy Compd 775:281–289CrossRefGoogle Scholar
  47. Sajid MM, Shad NA, Javed Y, Khan SB, Imran Z, Hassan S, Hussain Z, Zhang Z, Amin N (2019c) Arab J Sci Eng 44:6659–6667CrossRefGoogle Scholar
  48. Sayılkan F, Erdemoğlu S, Asiltürk M, Akarsu M, Şener Ş, Sayılkan H, Erdemoğlu M, Arpaç E (2006) Mater Res Bull 41:2276–2285CrossRefGoogle Scholar
  49. Şen Z (2017) Int J Energy Res 41:229–239CrossRefGoogle Scholar
  50. Shad NA, Sajid MM, Amin N, Javed Y, Akhtar K, Ahmad G, Hassan S, Ikram M (2019a) Ceram Int 45:19015–19021Google Scholar
  51. Shad NA, Sajid MM, Haq A-U, Amin N, Imran Z, Anwar H, Ali K, Hussain Z, Younus A, Javed Y (2019b) Arab J Sci Eng 44:6669–6675CrossRefGoogle Scholar
  52. Shen G, Pan L, Lü Z, Wang C, Zhang X, Zou J-J (2018) Chin J Catal 39:920–928CrossRefGoogle Scholar
  53. Silversmit G, Depla D, Poelman H, Marin GB, De Gryse R (2004) J Electron Spectrosc Relat Phenom 135:167–175CrossRefGoogle Scholar
  54. Subramanian M, Dhayabaran VV, Sastikumar D, Shanmugavadivel M (2018) J Alloy Compd 750:153–163CrossRefGoogle Scholar
  55. Taabouche A (2015) Thèse de Doctorat. Université de Constantine 1, pp 1–97Google Scholar
  56. Wang C, Shaw LL (2014) J Sol–Gel Sci Technol 72:602–614CrossRefGoogle Scholar
  57. Wang Z, Huang B, Dai Y, Qin X, Zhang X, Wang P, Liu H, Yu J (2009) J Phys Chem C 113:4612–4617CrossRefGoogle Scholar
  58. Wu J, Xu F, Li S, Ma P, Zhang X, Liu Q, Fu R, Wu D (2019) Adv Mater 31:1802922CrossRefGoogle Scholar
  59. Xie Y, Yin J, Zheng J, Wang L, Wu J, Dresselhaus MS, Zhang X (2019) ACS Appl Mater Interfaces 11(35):32244–32250Google Scholar
  60. Yang W, Tan G, Huang J, Ren H, Xia A, Zhao C (2015) Ceram Int 41:1495–1503CrossRefGoogle Scholar
  61. Yuan Q, Chen L, Xiong M, He J, Luo S-L, Au C-T, Yin S-F (2014) Chem Eng J 255:394–402CrossRefGoogle Scholar
  62. Zeng D, Yang K, Yu C, Chen F, Li X, Wu Z, Liu H (2018) Appl Catal B Environ 237:449–463Google Scholar
  63. Zhang L, Tan G, Wei S, Ren H, Xia A, Luo Y (2013) Ceram Int 39:8597–8604CrossRefGoogle Scholar
  64. Zhao W, Guo Y, Faiz Y, Yuan W-T, Sun C, Wang S-M, Deng Y-H, Zhuang Y, Li Y, Wang X-M (2015) Appl Catal B 163:288–297CrossRefGoogle Scholar
  65. Zhou Y, Krumeich F, Heel A, Patzke GR (2010) Dalton Trans 39:6043–6048CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.Department of PhysicsGovernment College University Allama Iqbal RoadFaisalabadPakistan
  2. 2.Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic EngineeringShenzhen UniversityShenzhenChina
  3. 3.Department of PhysicsUniversity of AgricultureFaisalabadPakistan
  4. 4.Institute for Advanced Study, Shenzhen UniversityShenzhenChina
  5. 5.Advanced Key Laboratory for New Ceramics, School of Materials ScienceEngineering, Tsinghua UniversityBeijingChina
  6. 6.Department of PhysicsComsat University IslamabadIslamabadPakistan
  7. 7.Department of Applied SciencesNational Textile UniversityFaisalabadPakistan

Personalised recommendations