Advertisement

Highly effective visible light-activated cobalt-doped TiO2 nanoparticles for antibacterial coatings against Campylobacter jejuni

  • Mahnoor Ali
  • Rafaqat Hussain
  • Fawad Tariq
  • Zobia Noreen
  • Arbab Mohammad Toufiq
  • Habib Bokhari
  • Naureen Akhtar
  • Shams ur RahmanEmail author
Original Article
  • 28 Downloads

Abstract

Pure and cobalt-doped nanocrystalline TiO2 nanostructures, with different concentrations of cobalt (1, 2.5, 5, 10 mol%), were synthesized by a simple hydrothermal route and their antibacterial activity was tested. The corresponding structural and chemical properties of the as-synthesized nanoparticles clearly suggested the occurrence of lattice defects in TiO2 structure. The crystalline phases and particle-size study of the pure and doped TiO2 nanoparticles showed the formation of highly pure anatase phase with grain sizes ranging between 7 and 14 nm, where the functional groups and bond lengths were observed through Fourier transform infrared (FTIR) analysis. Raman spectroscopy analysis displayed the broadening of Raman peaks and a systematic frequency shifts with increase in cobalt concentration because of the reduced particle size. Moreover, UV–Vis spectroscopy indicated the visible light absorption of TiO2 with increase in the concentration of cobalt, which suggests decrease in the energy bandgap. Furthermore, these visible light-activated photocatalysts showed enhanced antibacterial activity in particular against notorious foodborne Gram negative pathogen i.e., Campylobacter jejuni. Moreover, these high energy photocatalysts were able to effectively kill waterborne Gram negative pathogen i.e., Vibrio cholerae as well as foodborne Gram positive pathogen i.e., Staphylococcus aureus. Therefore, we believe that these visible light-activated photocatalysts may be used as broad spectrum antimicrobial agents against groups of such pathogens impacting significantly human health and economy.

Keywords

Nanoparticles Hydrothermal Photocatalytic Antibacterial activity C. jejuni 

Notes

Acknowledgements

The authors would like to thank the Higher Education Commission of Pakistan for providing funding (NRPU project 5349/Federal/NRPU/R&D/HEC/2016). HB thanks British Council-HEC SPEKE program to support study “Campylobacter Control in Poultry through Training for Commercial Poultry Farm Workers”.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

References

  1. Acheson D, Allos BM (2001) Campylobacter jejuni infections: update on emerging issues and trends. Clin Infect Dis 32(8):1201–1206.  https://doi.org/10.1086/319760 CrossRefGoogle Scholar
  2. Banerjee AN, Anitha VC, Joo SW (2017) Improved electrochemical properties of morphology-controlled titania/titanate nanostructures prepared by in situ hydrothermal surface modification of self-source Ti substrate for high-performance supercapacitors. Sci Rep 7(1):13227.  https://doi.org/10.1038/s41598-017-11346-2 CrossRefGoogle Scholar
  3. Blaser MJ, Taylor DN, Feldman RA (1983) Epidemiology of Campylobacter jejuni infections. Epidemiol Rev 5(1):157–176.  https://doi.org/10.1093/oxfordjournals.epirev.a036256 CrossRefGoogle Scholar
  4. Boschi-Pinto C, Velebit L, Shibuya K (2008) Estimating child mortality due to diarrhoea in developing countries. Bull WHO 86(9):710–717.  https://doi.org/10.2471/BLT.07.050054 CrossRefGoogle Scholar
  5. Cecarini V, Gee J, Fioretti E, Amici M, Angeletti M, Eleuteri AM, Keller JN (2007) Protein oxidation and cellular homeostasis: emphasis on metabolism. Biochim Biophys Acta 1773(2):93–104.  https://doi.org/10.1016/j.bbamcr.2006.08.039 CrossRefGoogle Scholar
  6. Chawengkijwanich C, Hayata Y (2008) Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int J Food Microbiol 123(3):288–292.  https://doi.org/10.1016/j.ijfoodmicro.2007.12.017 CrossRefGoogle Scholar
  7. Chekuri RD, Tirukkovalluri SR (2017) Synthesis of cobalt doped titania nano material assisted by gemini surfactant: characterization and application in degradation of Acid Red under visible light irradiation. S Afr J Chem Eng 24:183–195.  https://doi.org/10.1016/j.sajce.2017.10.001 CrossRefGoogle Scholar
  8. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959.  https://doi.org/10.1021/cr0500535 CrossRefGoogle Scholar
  9. Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746.  https://doi.org/10.1126/science.1200448 CrossRefGoogle Scholar
  10. Cho IS, Lee CH, Feng Y, Logar M, Rao PM, Cai L, Kim DR, Sinclair R, Zheng X (2013) Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance. Nat Commun 4:1723.  https://doi.org/10.1038/ncomms2729 CrossRefGoogle Scholar
  11. Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98(51):13669–13679.  https://doi.org/10.1021/j100102a038 CrossRefGoogle Scholar
  12. Devanand Venkatasubbu G, Ramasamy S, Ramakrishnan V, Kumar J (2013) Folate targeted PEGylated titanium dioxide nanoparticles as a nanocarrier for targeted paclitaxel drug delivery. Adv Powder Technol 24(6):947–954.  https://doi.org/10.1016/j.apt.2013.01.008 CrossRefGoogle Scholar
  13. Domingues AR, Pires SM, Halasa T, Hald T (2012) Source attribution of human campylobacteriosis using a meta-analysis of case-control studies of sporadic infections. Epidemiol Infect 140(6):970–981.  https://doi.org/10.1017/S0950268811002676 CrossRefGoogle Scholar
  14. Fischer Walker CL, Perin J, Aryee MJ, Boschi-Pinto C, Black RE (2012) Diarrhea incidence in low- and middle-income countries in 1990 and 2010: a systematic review. BMC Public Health 12:220.  https://doi.org/10.1186/1471-2458-12-220 CrossRefGoogle Scholar
  15. Hannu T, Mattila L, Rautelin H, Pelkonen P, Lahdenne P, Siitonen A, Leirisalo-Repo M (2002) Campylobacter-triggered reactive arthritis: a population-based study. Rheumatology 41(3):312–318.  https://doi.org/10.1093/rheumatology/41.3.312 CrossRefGoogle Scholar
  16. Hoseini SN, Pirzaman AK, Aroon MA, Pirbazari AE (2017) Photocatalytic degradation of 2,4-dichlorophenol by Co-doped TiO2 (Co/TiO2) nanoparticles and Co/TiO2 containing mixed matrix membranes. J Water Process Eng 17:124–134.  https://doi.org/10.1016/j.jwpe.2017.02.015 CrossRefGoogle Scholar
  17. Hossain FM, Sheppard L, Nowotny J, Murch GE (2008) Optical properties of anatase and rutile titanium dioxide: Ab initio calculations for pure and anion-doped material. J Phys Chem Solids 69(7):1820–1828.  https://doi.org/10.1016/j.jpcs.2008.01.017 CrossRefGoogle Scholar
  18. Hosseini-Zori M (2018) Co-doped TiO2 nanostructures as a strong antibacterial agent and self-cleaning cover: synthesis, characterization and investigation of photocatalytic activity under UV irradiation. J Photochem Photobiol B Biol 178:512–520.  https://doi.org/10.1016/j.jphotobiol.2017.12.008 CrossRefGoogle Scholar
  19. Iwasaki M, Hara M, Kawada H, Tada H, Ito S (2000) Cobalt ion-doped TiO2 photocatalyst response to visible light. J Colloid Interface Sci 224(1):202–204.  https://doi.org/10.1006/jcis.1999.6694 CrossRefGoogle Scholar
  20. Jaffari GH, Tahir A, Ali NZ, Ali A, Qurashi US (2018) Effect of Cr–N codoping on structural phase transition, Raman modes, and optical properties of TiO2 nanoparticles. J Appl Phys 123(16):161541.  https://doi.org/10.1063/1.5003448 CrossRefGoogle Scholar
  21. Jaimy KB, Safeena VP, Ghosh S, Hebalkar NY, Warrier KGK (2012) Photocatalytic activity enhancement in doped titanium dioxide by crystal defects. Dalton Trans 41(16):4824–4832.  https://doi.org/10.1039/C2DT12018F CrossRefGoogle Scholar
  22. Janssen R, Krogfelt KA, Cawthraw SA, van Pelt W, Wagenaar JA, Owen RJ (2008) Host–pathogen interactions in Campylobacter infections: the host perspective. Clin Microbiol Rev 21(3):505–518.  https://doi.org/10.1128/CMR.00055-07 CrossRefGoogle Scholar
  23. Johnson TJ, Shank JM, Johnson JG (2017) Current and potential treatments for reducing Campylobacter colonization in animal hosts and disease in humans. Front Microbiol 8:487.  https://doi.org/10.3389/fmicb.2017.00487 CrossRefGoogle Scholar
  24. Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Man SM (2015) Global epidemiology of Campylobacter infection. Clin Microbiol Rev 28(3):687–720.  https://doi.org/10.1128/CMR.00006-15 CrossRefGoogle Scholar
  25. Kalmokoff M, Lanthier P, Tremblay T-L, Foss M, Lau PC, Sanders G, Austin J, Kelly J, Szymanski CM (2006) Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J Bacteriol 188(12):4312–4320.  https://doi.org/10.1128/JB.01975-05 CrossRefGoogle Scholar
  26. Kim Y, Hwang HM, Wang L, Kim I, Yoon Y, Lee H (2016) Solar-light photocatalytic disinfection using crystalline/amorphous low energy bandgap reduced TiO2. Sci Rep 6:25212.  https://doi.org/10.1038/srep25212 CrossRefGoogle Scholar
  27. Kosek M, Bern C, Guerrant RL (2003) The global burden of diarrheal disease, as estimated from studies published between 1992 and 2000. Bull WHO 81:197–204.  https://doi.org/10.1590/S0042-96862003000300010 CrossRefGoogle Scholar
  28. Kumar PM, Badrinarayanan S, Sastry M (2000) Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films 358(1):122–130.  https://doi.org/10.1016/S0040-6090(99)00722-1 CrossRefGoogle Scholar
  29. Liu G, Yang HG, Pan J, Yang YQ, Lu GQ, Cheng H-M (2014) Titanium dioxide crystals with tailored facets. Chem Rev 114(19):9559–9612.  https://doi.org/10.1021/cr400621z CrossRefGoogle Scholar
  30. Lu X, Weakley AT, Aston DE, Rasco BA, Wang S, Konkel ME (2012) Examination of nanoparticle inactivation of Campylobacter jejuni biofilms using infrared and Raman spectroscopies. J Appl Microbiol 113(4):952–963.  https://doi.org/10.1111/j.1365-2672.2012.05373.x CrossRefGoogle Scholar
  31. Majeed Khan MA, Kumar S, Naziruddin Khan M, Ahamed M, Al Dwayyan AS (2014) Microstructure and blueshift in optical band gap of nanocrystalline AlxZn1–xO thin films. J Lumin 155:275–281.  https://doi.org/10.1016/j.jlumin.2014.06.007 CrossRefGoogle Scholar
  32. Manzoor U, Siddique S, Ahmed R, Noreen Z, Bokhari H, Ahmad I (2016) Antibacterial, structural and optical characterization of mechano-chemically prepared ZnO nanoparticles. PLoS One 11(5):e0154704.  https://doi.org/10.1371/journal.pone.0154704 CrossRefGoogle Scholar
  33. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C 13(3):169–189.  https://doi.org/10.1016/j.jphotochemrev.2012.06.001 CrossRefGoogle Scholar
  34. Ndong LBB, Ibondou MP, Miao Z, Gu X, Lu S, Qiu Z, Sui Q, Mbadinga SM (2014) Efficient dechlorination of chlorinated solvent pollutants under UV irradiation by using the synthesized TiO2 nano-sheets in aqueous phase. J Environ Sci 26(5):1188–1194.  https://doi.org/10.1016/S1001-0742(13)60541-0 CrossRefGoogle Scholar
  35. Noreen Z, Ahmad I, Siddiqui F, Ziya AB, Abbas T, Bokhari H (2017) Size dependent structural, anti-bacterial and anti-biofilm properties of Er doped Li–Ni ferrites synthesized by the sol-gel auto-combustion route. Ceram Int 43(14):10784–10790.  https://doi.org/10.1016/j.ceramint.2017.05.092 CrossRefGoogle Scholar
  36. Noreen Z, Khalid NR, Abbasi R, Javed S, Ahmad I, Bokhari H (2019) Visible light sensitive Ag/TiO2/graphene composite as a potential coating material for control of Campylobacter jejuni. Mater Sci Eng C 98:125–133.  https://doi.org/10.1016/j.msec.2018.12.087 CrossRefGoogle Scholar
  37. Nunes M, Monteiro O, Castro AL, Vasconcelos DA, Silvestre A (2008) A new chemical route to synthesise TM-doped (TM=Co, Fe) TiO2 nanoparticles. Eur J Inorg Chem 2008:961.  https://doi.org/10.1002/ejic.200700978 CrossRefGoogle Scholar
  38. Organization WH (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. WHO, Geneva, p 2017Google Scholar
  39. Pan JH, Bahnemann DW, Wang Q, Wang C, Zhang X (2014) Solar energy conversion by nanostructured TiO2. Int J Photoenergy 2014:2.  https://doi.org/10.1155/2014/704729 CrossRefGoogle Scholar
  40. Plugaru R, Cremades A, Piqueras J (2003) The effect of annealing in different atmospheres on the luminescence of polycrystalline TiO2. J Phys Condens Matter 16(2):S261–S268.  https://doi.org/10.1088/0953-8984/16/2/031 CrossRefGoogle Scholar
  41. Quadri F, Nasrin D, Khan A, Bokhari T, Tikmani SS, Nisar MI, Bhatti Z, Kotloff K, Levine MM, Zaidi AKM (2013) Health care use patterns for diarrhea in children in low-income periurban communities of Karachi, Pakistan. Am J Trop Med Hyg 89(1 Suppl):49–55.  https://doi.org/10.4269/ajtmh.12-0757 CrossRefGoogle Scholar
  42. Sarker SD, Nahar L, Kumarasamy Y (2007) Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42(4):321–324.  https://doi.org/10.1016/j.ymeth.2007.01.006 CrossRefGoogle Scholar
  43. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114(19):9919–9986.  https://doi.org/10.1021/cr5001892 CrossRefGoogle Scholar
  44. Senthil Kumar S, Rajendran A (2018) Biosynthesis of TiO2 nanoparticles using Justicia gendarussa leaves for photocatalytic and toxicity studies. Res Chem Intermed.  https://doi.org/10.1007/s11164-018-3464-3 CrossRefGoogle Scholar
  45. Sidhik S, Cerdan Pasarán A, Esparza D, López Luke T, Carriles R, De la Rosa E (2018) Improving the optoelectronic properties of mesoporous TiO2 by cobalt doping for high-performance hysteresis-free perovskite solar cells. ACS Appl Mater Interfaces 10(4):3571–3580.  https://doi.org/10.1021/acsami.7b16312 CrossRefGoogle Scholar
  46. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227–1249.  https://doi.org/10.2147/IJN.S121956 CrossRefGoogle Scholar
  47. Wu MJ, Bak T, Doherty PJ, Moffitt MC, Nowotny J, Bailey TD, Kersaitis C (2014) Photocatalysis of titanium dioxide for water disinfection: challenges and future perspectives. Int J Chem 2014:9.  https://doi.org/10.1155/2014/973484 CrossRefGoogle Scholar
  48. Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77(7):2325–2331.  https://doi.org/10.1128/AEM.02149-10 CrossRefGoogle Scholar
  49. Zhao Z-J, Hwang SH, Jeon S, Hwang B, Jung J-Y, Lee J, Park S-H, Jeong J-H (2017) Three-dimensional plasmonic Ag/TiO2 nanocomposite architectures on flexible substrates for visible-light photocatalytic activity. Sci Rep 7(1):8915.  https://doi.org/10.1038/s41598-017-09401-z CrossRefGoogle Scholar
  50. Zheng Z, Huang B, Qin X, Zhang X, Dai Y, Whangbo M-H (2011) Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M=Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. J Mater Chem 21(25):9079–9087.  https://doi.org/10.1039/C1JM10983A CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.Department of PhysicsCOMSATS University IslamabadIslamabadPakistan
  2. 2.Department of PhysicsHazara University MansehraMansehraPakistan
  3. 3.Department of ChemistryCOMSATS University IslamabadIslamabadPakistan
  4. 4.Department of BiosciencesCOMSATS University IslamabadIslamabadPakistan
  5. 5.Department of Engineering SciencesUniversity of AgderGrimstadNorway

Personalised recommendations