Advertisement

Dielectric properties of ferroelectric nanocomposites of nanocrystalline cellulose and sodium nitrite

  • Hoai Thuong Nguyen
  • A. S. Sidorkin
  • S. D. Milovidova
  • M. SumetsEmail author
Original Article
  • 11 Downloads

Abstract

A novel nanocomposite consisting of nanocrystalline cellulose (NCC) and sodium nitrite (NaNO2) was synthesized and its dielectric properties were investigated at the temperature range of 20–170 °C and at the frequency range of 10−3–106 Hz under low electric fields (1 V cm−1). The obtained results manifest a reduction in the phase transition temperature of the synthesized composite (110 °C) compared to those of bulk NaNO2 (164 °C) due to the tilting action of the depolarizing field on the polarization for NaNO2 inclusions resulting from the presence of the bound charges on their surfaces. In addition, a significant dispersion of dielectric permittivity was detected and the explanation for this was based on the Maxwell–Wagner–Sillars relaxation mechanism.

Keywords

Ferroelectric nanocomposites Cellulose Sodium nitrite Phase transition Relaxation 

Notes

Acknowledgements

The study was supported by the Russian Science Foundation, Project no. 17-72-20105.

References

  1. Agate S, Joyce M, Lucia L et al (2018) Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites—a review. Carbohydr Polym 198:249–260.  https://doi.org/10.1016/j.carbpol.2018.06.045 CrossRefGoogle Scholar
  2. Baryshnikov SV, Stukova EV, Charnaya EV et al (2006) Dielectric and NMR studies of nanoporous matrices loaded with sodium nitrite. Phys Solid State 48:593–599.  https://doi.org/10.1134/S1063783406030292 CrossRefGoogle Scholar
  3. Darinskii B, Sidorkin A, Sigov A et al (2018) Influence of depolarizing fields and screening effects on phase transitions in ferroelectric composites. Materials (Basel) 11:85.  https://doi.org/10.3390/ma11010085 CrossRefGoogle Scholar
  4. Emmert S, Wolf M, Gulich R et al (2011) Electrode polarization effects in broadband dielectric spectroscopy. Eur Phys J B 83:157–165.  https://doi.org/10.1140/epjb/e2011-20439-8 CrossRefGoogle Scholar
  5. Fokin AV, Kumzerov YA, Okuneva NM et al (2002) Temperature evolution of sodium nitrite structure in a restricted geometry. Phys Rev Lett 89:175503.  https://doi.org/10.1103/PhysRevLett.89.175503 CrossRefGoogle Scholar
  6. Gesi K, Takagi Y (1964) The effect of gamma-ray irradiation on the dielectric properties of single crystals of sodium nitrite. J Phys Soc Japan 19:632–639.  https://doi.org/10.1143/JPSJ.19.632 CrossRefGoogle Scholar
  7. Gomez EF, Steckl AJ (2015) Improved performance of OLEDs on cellulose/epoxy substrate using adenine as a hole injection layer. ACS Photonics 2:439–445.  https://doi.org/10.1021/ph500481c CrossRefGoogle Scholar
  8. Gorchakov AG, Sedykh PS, Charnaya EV et al (2009) MAS NMR studies of nanoporous matrices filled with sodium nitrite. Phys Solid State 51:2152–2156.  https://doi.org/10.1134/S1063783409100266 CrossRefGoogle Scholar
  9. Ishai PB, Talary MS, Caduff A et al (2013) Electrode polarization in dielectric measurements: a review. Meas Sci Technol 24:102001.  https://doi.org/10.1088/0957-0233/24/10/102001 CrossRefGoogle Scholar
  10. Khripunov AK, Tkachenko AA, Baklagina YG et al (2007) Formation of a composite from Se0 nanoparticles stabilized with polyvinylpyrrolidone and Acetobacter xylinum cellulose gel films. Russ J Appl Chem 80:1549–1557.  https://doi.org/10.1134/S1070427207090200 CrossRefGoogle Scholar
  11. Klechkovskaya VV, Baklagina YG, Stepina ND et al (2003) Structure of cellulose Acetobacter xylinum. Crystallogr Rep 48:755–762.  https://doi.org/10.1134/1.1612596 CrossRefGoogle Scholar
  12. Korotkov LN, Dvornikov VS, Dyad’kin VA, Naberezhnov AA, Sysoeva AA (2007) Dielectric and elastic responses of nanostructured sodium nitrite in a porous glass. Bull Russ Acad Sci Phys 7:1404–1407CrossRefGoogle Scholar
  13. Li R, Wang L, Kong D et al (2018) Recent progress on biodegradable materials and transient electronics. Bioact Mater 3:322–333.  https://doi.org/10.1016/j.bioactmat.2017.12.001 CrossRefGoogle Scholar
  14. Lines ME, Glass AM (2001) Principles and applications of ferroelectrics and related materials. Oxford University Press, OxfordCrossRefGoogle Scholar
  15. Lu H, Zhang X, Zhang H (2006) Influence of the relaxation of Maxwell–Wagner–Sillars polarization and dc conductivity on the dielectric behaviors of nylon 1010. J Appl Phys 100:054104.  https://doi.org/10.1063/1.2336494 CrossRefGoogle Scholar
  16. Mihai IV, Glowacki ED, Sariciftci NS, Bauer S (2017) Green Materials for Electronics. Wiley-VCH, Weinheim.  https://doi.org/10.1002/9783527692958 Google Scholar
  17. Milovidova SD, Rogazinskaya OV, Sidorkin AS et al (2014) Dielectric properties of composites based on nanocrystalline cellulose and triglycine sulfate. Ferroelectrics 469:116–119.  https://doi.org/10.1080/00150193.2014.949132 CrossRefGoogle Scholar
  18. Morozovska AN, Glinchuk MD, Eliseev EA (2007) Phase transitions induced by confinement of ferroic nanoparticles. Phys Rev B 76:014102.  https://doi.org/10.1103/PhysRevB.76.014102 CrossRefGoogle Scholar
  19. Nguyen HT, Sidorkin AS, Milovidova SD, Rogazinskaya OV (2015) Dielectric dispersion in ferroelectric composite nanocrystalline cellulose—triglycine sulfate. In: 2015 joint IEEE international symposium on the applications of ferroelectric (ISAF), international symposium on integrated functionalities (ISIF), and piezoelectric force microscopy workshop (PFM). IEEE, pp 272–275Google Scholar
  20. Pankova SV, Poborchii VV, Solov’ev VG (1995) No title. J Phys Condens Matter 8:203–206CrossRefGoogle Scholar
  21. Popravko NG, Sidorkin AS, Milovidova SD, Rogazinskaya OV (2015) IR spectroscopy of ferroelectric composites. Phys Solid State 57:522–526.  https://doi.org/10.1134/S1063783415030233 CrossRefGoogle Scholar
  22. Rogazinskaya OV, Milovidova SD, Popravko NG et al (2013) Repolarization properties of nanocomposites based on porous glass and aluminum oxide with inclusions of sodium nitrite. Ferroelectrics 444:107–110.  https://doi.org/10.1080/00150193.2013.786602 CrossRefGoogle Scholar
  23. Rogazinskaya OV, Sidorkin AS, Popravko NG et al (2014) Dielectric and repolarization properties of nanocomposites based on porous matrix with sodium nitrite. Ferroelectrics 469:138–143.  https://doi.org/10.1080/00150193.2014.949146 CrossRefGoogle Scholar
  24. Rysiakiewicz-Pasek E, Poprawski R, Ciżman A, Sieradzki A (2012) Nanocomposite materials—ferroelectric nanoparticles incorporated into porous matrix. Springer, Dordrecht, pp 171–181Google Scholar
  25. Tien C, Charnaya EV, Baryshnikov SV et al (2004) Evolution of NaNO2 in porous matrices. Phys Solid State 46:2301–2305.  https://doi.org/10.1134/1.1841397 CrossRefGoogle Scholar
  26. Vakhrushev SB, Kumzerov YA, Fokin A et al (2004) Na 23 spin-lattice relaxation of sodium nitrite in confined geometry. Phys Rev B 70:132102.  https://doi.org/10.1103/PhysRevB.70.132102 CrossRefGoogle Scholar
  27. Yoon S, Yoon JG, Kwun SI (1986) DC conductivity of gamma-ray irradiIrradiated NaNO2. J Korean Phys Soc 19:244–245Google Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering TechnologyIndustrial University of Ho Chi Minh CityHo Chi Minh CityVietnam
  2. 2.Voronezh State UniversityVoronezhRussia

Personalised recommendations