Advertisement

Nano-assembly and mechanical performance of cold-welded nanoporous Au

  • Hongjian Zhou
  • Yuehui Xian
  • Jiejie Li
  • Chenyao Tian
  • Bin Jian
  • Guoming HuEmail author
  • Re XiaEmail author
Original Article
  • 78 Downloads

Abstract

The increased diversity of microstructure of nanoporous materials can be expected to greatly expand their functional application in more industries. By incorporating nanoporous metals into cold-welding technology, we report an approach to directly forming the nanoporous materials with various microstructure inside. Nanoporous gold (Au) with ideal bi-continuous nanoporous structures was modeled using spinodal decomposition. Understanding the mechanical properties is the primary step to improve the reliability on the operational performance of nanoporous structures. After the process of cold-welding manufacture, the well-interconnected nanoporous Au was successfully fabricated and the mechanical properties of cold-welded structures were studied. Molecular dynamic simulations on samples with ligament diameter ranging from 3.264 to 6.528 nm and relative density ranging from 0.30 to 0.45 were also carried out to study how these factors affect the assembly process. These results are believed to facilitate the bottom-up nanofabrication and nanoassembly of composite structures for better mechanical performance.

Keywords

Nanoporous metals Cold-welding Molecular dynamics Nanoassembly Mechanical properties 

Notes

Acknowledgements

We gratefully acknowledge support from the National Natural Science Foundation of China (Grant nos. 11102140 and 51575404).

Compliance with ethical standards

Conflict of interest

No potential conflict of interest was reported by the authors.

References

  1. Dai G, Wang B, Xu S et al (2016) Side-to-Side cold welding for controllable nanogap formation from “Dumbbell” ultrathin gold nanorods. ACS Appl Mater Interfaces 8(21):13506–13511CrossRefGoogle Scholar
  2. Ding S, Tian Y, Jiang Z et al (2015) Molecular dynamics simulation of joining process of Ag-Au nanowires and mechanical properties of the hybrid nanojoint. AIP Adv 5(5):057120CrossRefGoogle Scholar
  3. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695–1697CrossRefGoogle Scholar
  4. Hu YS, Guo YG, Sigle W et al (2006) Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity. Nat Mater 5(9):713CrossRefGoogle Scholar
  5. Huang PH, Kuo JK, Wu YF (2012) Atomistic simulations of solid-state pressure welding of metallic nanowires. Appl Phys A 109(3):561–569CrossRefGoogle Scholar
  6. Huang R, Shao GF, Wen YH (2016) Cold welding of copper nanowires with single-crystalline and twinned structures: a comparison study. Physica E 83:329–332CrossRefGoogle Scholar
  7. Li J, Xian Y, Zhou H et al (2018) Microstructure-sensitive mechanical properties of nanoporous gold: a molecular dynamics study. Model Simul Mater Sci Eng 26(7):075003CrossRefGoogle Scholar
  8. Lu Y, Huang JY, Wang C et al (2010) Cold welding of ultrathin gold nanowires. Nat Nanotechnol 5(3):218–224CrossRefGoogle Scholar
  9. Mäder U (1980) Chord length distributions for circular cylinders. Radiat Res 82(3):454–466CrossRefGoogle Scholar
  10. Marzbanrad E, Hu A, Zhao B et al (2013) Room temperature nanojoining of triangular and hexagonal silver nanodisks. Phys Chem C 117(32):16665–16676CrossRefGoogle Scholar
  11. Mishin Y, Mehl MJ, Papaconstantopoulos DA et al (2001) Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys Rev B 63(22):224106CrossRefGoogle Scholar
  12. Nieh TG, Wadsworth J (1991) Hall-Petch relation in nanocrystalline solidsb. Scripta Metall Mater 25:955–958CrossRefGoogle Scholar
  13. Oppermann H, Dietrich L (2012) Nanoporous gold bumps for low temperature bonding. Microelectron Reliab 52(2):356–360CrossRefGoogle Scholar
  14. Pereira ZS, Da Silva EZ (2011) Cold welding of gold and silver nanowires: a molecular dynamics study. J Phys Chem C 115(46):22870–22876CrossRefGoogle Scholar
  15. Sanders DE, DePristo AE (1992) Predicted diffusion rates on fcc (001) metal surfaces for adsorbate/substrate combinations of Ni, Cu, Rh, Pd, Ag, Pt. Au. Surf Sci 260(1–3):116CrossRefGoogle Scholar
  16. Stukowski A, Albe K (2010a) Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model Simul Mater Sci Eng 18(8):13CrossRefGoogle Scholar
  17. Stukowski A, Albe K (2010b) Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model Simul Mater Sci Eng 18(8):085001CrossRefGoogle Scholar
  18. Sun X, Xu G, Li X et al (2013) Mechanical properties and scaling laws of nanoporous gold. J Appl Phys 113(2):023505CrossRefGoogle Scholar
  19. Wang B, Zhang Z, Chang K et al (2018) New deformation-induced nanostructure in silicon. Nano Lett 18(7):4611–4617CrossRefGoogle Scholar
  20. Wu CD, Fang TH, Wu CC (2015) Atomistic simulations of nanowelding of single-crystal and amorphous gold nanowires. Appl Phys 117(1):014307CrossRefGoogle Scholar
  21. Wu CD, Fang TH, Wu CC (2016a) Effect of temperature on welding of metallic nanowires investigated using molecular dynamics simulations. Mol Simul 42(2):131–137CrossRefGoogle Scholar
  22. Wu CD, Fang TH, Wu CC (2016b) Size effect on cold-welding of gold nanowires investigated using molecular dynamics simulations. Appl Phys A Mater 122(3):218CrossRefGoogle Scholar
  23. Zhang Z, Song Y, Xu C et al (2012a) A novel model for undeformed nanometer chips of soft-brittle HgCdTe films induced by ultrafine diamond grits. Scripta Mater 67(2):197–200CrossRefGoogle Scholar
  24. Zhang Z, Huo F, Zhang X et al (2012b) Fabrication and size prediction of crystalline nanoparticles of silicon induced by nanogrinding with ultrafine diamond grits. Scripta Mater 67(7–8):657–660CrossRefGoogle Scholar
  25. Zhang Z, Huang S, Chen L et al (2017) Ultrahigh hardness on a face-centered cubic metal. Appl Surf Sci 416:891–900CrossRefGoogle Scholar
  26. Zhang Z, Shi Z, Du Y et al (2018a) A novel approach of chemical mechanical polishing for a titanium alloy using an environment-friendly slurry. Appl Surf Sci 427:409–415CrossRefGoogle Scholar
  27. Zhang Z, Cui J, Wang B et al (2018b) In situ TEM observation of rebonding on fractured silicon carbide. Nanoscale 10(14):6261–6269CrossRefGoogle Scholar
  28. Zhang Z, Cui J, Zhang J et al (2019a) Environment friendly chemical mechanical polishing of copper. Appl Surf Sci 467:5–11CrossRefGoogle Scholar
  29. Zhang Z, Cui J, Chang K et al (2019b) Deformation induced new pathways in silicon. Nanoscale 11(20):9862–9868CrossRefGoogle Scholar
  30. Zhou H, Xian Y, Wu R, Hu G, Xia R (2017) Formation of gold composite nanowires using cold welding: a structure-based molecular dynamics simulation. CrystEngComm 19(42):6347–6354CrossRefGoogle Scholar
  31. Zhou H, Li J, Xian Y et al (2018) Molecular dynamics study on cold-welding of 3D nanoporous composite structures. Phys Chem Chem Phys 20(17):12288–12294CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.Key Laboratory of Hydraulic Machinery Transients (Wuhan University)Ministry of EducationWuhanChina
  2. 2.Hubei Key Laboratory of Waterjet Theory and New Technology (Wuhan University)WuhanChina

Personalised recommendations