Functional nanocomposites for 3D printing of stretchable and wearable sensors

  • Mohammad Abshirini
  • Mohammad Charara
  • Parisa Marashizadeh
  • Mrinal C. Saha
  • M. Cengiz Altan
  • Yingtao LiuEmail author
Original Article


This paper presents highly flexible strain sensors fabricated by extrusion-based 3D printing of electrically conductive nanocomposites consisting of multi-walled carbon nanotube (MWNT)/polydimethylsiloxane (PDMS). The effects of printing parameters and nanocomposite formulation on the piezoresistive behavior of the 3D-printed sensors are investigated. Experimental results demonstrate that the 3D printing-induced alignment of MWNTs results in the enhancement of piezoresistive sensing function of the nanocomposites. Detailed analyses are performed using the optimized sensors to characterize their sensing performance, including load rate dependency, repeatability under long-term cyclic loads, and relaxation behavior. The 3D-printed strain sensors demonstrate high flexibility, stretching to 146% strain before fracture, and exhibit a linear piezoresistive response up to 70% strain with a gauge factor of 12.15. The distribution of nanotubes in the polymer and the piezoresistive mechanism of the material are explored by in situ micro-mechanical testing under a scanning electron microscope (SEM). The developed sensors are attached on gloves to monitor the motion of a human hand, demonstrating their application wearable electronics.


Piezoresistivity Stretchable sensors 3D printing Carbon nanotube Conductive nanocomposites 


Supplementary material

13204_2019_1032_MOESM1_ESM.docx (923 kb)
Supplementary material 1 (DOCX 923 kb)


  1. Abshirini M, Charara M, Liu Y, Saha M, Altan MC (2018) 3D printing of highly stretchable strain sensors based on carbon nanotube nanocomposites. Adv Eng Mater 20:1800425CrossRefGoogle Scholar
  2. Agarwala S, Goh GL, Le Dinh T-S, An J, Peh ZK, Yeong WY, Kim Y-J (2018) Wearable bandage-based strain sensor for home healthcare: combining 3D aerosol jet printing and laser sintering. ACS Sens 4:218–226CrossRefGoogle Scholar
  3. Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8:5154–5163CrossRefGoogle Scholar
  4. Amjadi M, Kyung KU, Park I, Sitti M (2016) Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater 26:1678–1698CrossRefGoogle Scholar
  5. Cai L, Song L, Luan P, Zhang Q, Zhang N, Gao Q, Zhao D, Zhang X, Tu M, Yang F (2013) Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci Rep 3:3048CrossRefGoogle Scholar
  6. Cao H, Thakar SK, Oseng ML, Nguyen CM, Jebali C, Kouki AB, Chiao J-C (2015) Development and characterization of a novel interdigitated capacitive strain sensor for structural health monitoring. IEEE Sens J 15:6542–6548CrossRefGoogle Scholar
  7. Charara M, Abshirini M, Saha MC, Altan MC, Liu Y (2019a) Highly sensitive compression sensors using three-dimensional printed polydimethylsiloxane/carbon nanotube nanocomposites. J Intell Mater Syst Struct 18:1045389X19835953Google Scholar
  8. Charara M, Luo W, Saha MC, Liu Y (2019b) Investigation of lightweight and flexible carbon nanofiber/poly dimethylsiloxane nanocomposite sponge for piezoresistive sensor application. Adv Eng Mater 1801068.
  9. Chen S, Wei Y, Wei S, Lin Y, Liu L (2016) Ultrasensitive cracking-assisted strain sensors based on silver nanowires/graphene hybrid particles. ACS Appl Mater Interfaces 8:25563–25570CrossRefGoogle Scholar
  10. Choi DY, Kim MH, Oh YS, Jung S-H, Jung JH, Sung HJ, Lee HW, Lee HM (2017) Highly stretchable, hysteresis-free ionic liquid-based strain sensor for precise human motion monitoring. ACS Appl Mater Interfaces 9:1770–1780CrossRefGoogle Scholar
  11. Chowdhury S, Olima M, Liu Y, Saha M, Bergman J, Robison T (2016) Poly dimethylsiloxane/carbon nanofiber nanocomposites: fabrication and characterization of electrical and thermal properties. Int J Smart Nano Mater 7:236–247CrossRefGoogle Scholar
  12. Chowdhury SA, Saha MC, Patterson S, Robison T, Liu Y (2018) Highly conductive polydimethylsiloxane/carbon nanofiber composites for flexible sensor applications. Adv Mater Technol 4(1):1800398CrossRefGoogle Scholar
  13. Cohen DJ, Mitra D, Peterson K, Maharbiz MM (2012) A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano letters 12:1821–1825CrossRefGoogle Scholar
  14. Compton BG, Lewis JA (2014) 3D-printing of lightweight cellular composites. Adv Mater 26:5930–5935CrossRefGoogle Scholar
  15. Costa P, Silvia C, Viana J, Mendez SL (2014) Extruded thermoplastic elastomers styrene–butadiene–styrene/carbon nanotubes composites for strain sensor applications. Compos Part B: Eng 57:242–249CrossRefGoogle Scholar
  16. Fallahi A, Bahramzadeh Y, Tabatabaie S, Shahinpoor M (2017) A novel multifunctional soft robotic transducer made with poly (ethylene-co-methacrylic acid) ionomer metal nanocomposite. Int J Intell Robot Appl 1:143–156CrossRefGoogle Scholar
  17. Farkash M, Brandon D (1994) Whisker alignment by slip extrusion. Mater Sci Eng, A 177:269–275CrossRefGoogle Scholar
  18. Gnanasekaran K, Heijmans T, Van Bennekom S, Woldhuis H, Wijnia S, de With G, Friedrich H (2017) 3D printing of CNT-and graphene-based conductive polymer nanocomposites by fused deposition modeling. Appl Mater Today 9:21–28CrossRefGoogle Scholar
  19. Goh GL, Agarwala S, Tan YJ, Yeong WY (2018a) A low cost and flexible carbon nanotube pH sensor fabricated using aerosol jet technology for live cell applications. Sens Actuators B: Chem 260:227–235CrossRefGoogle Scholar
  20. Goh GL, Agarwala S, Yeong WY (2018b) Directed and on-demand alignment of carbon nanotube: a review toward 3D. Print Electr Adv Mater Interfaces 6:1801318. CrossRefGoogle Scholar
  21. Guo SZ, Qiu K, Meng F, Park SH, McAlpine MC (2017) 3D printed stretchable tactile sensors. Adv Mater 29:1701218CrossRefGoogle Scholar
  22. Hinton TJ, Hudson A, Pusch K, Lee A, Feinberg AW (2016) 3D printing PDMS elastomer in a hydrophilic support bath via freeform reversible embedding. ACS Biomater Sci Eng 2:1781–1786CrossRefGoogle Scholar
  23. Ho DH, Sun Q, Kim SY, Han JT, Kim DH, Cho JH (2016) Stretchable and multimodal all graphene electronic skin. Adv Mater 28:2601–2608CrossRefGoogle Scholar
  24. Hoang PT, Salazar N, Porkka TN, Joshi K, Liu T, Dickens TJ, Yu Z (2016) Engineering crack formation in carbon nanotube-silver nanoparticle composite films for sensitive and durable piezoresistive sensors. Nanoscale Res Lett 11:422CrossRefGoogle Scholar
  25. Hong SY, Lee YH, Park H, Jin SW, Jeong YR, Yun J, You I, Zi G, Ha JS (2016) Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin. Adv Mater 28:930–935CrossRefGoogle Scholar
  26. Hu N, Karube Y, Yan C, Masuda Z, Fukunaga H (2008) Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater 56:2929–2936CrossRefGoogle Scholar
  27. Hwang HH, Zhu W, Victorine G, Lawrence N, Chen S (2018) 3D-printing of functional biomedical microdevices via light- and extrusion-based approaches. Small Methods 2:1700277CrossRefGoogle Scholar
  28. Jakus AE, Secor EB, Rutz AL, Jordan SW, Hersam MC, Shah RN (2015) Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9:4636–4648CrossRefGoogle Scholar
  29. Kang I, Schulz MJ, Kim JH, Shanov V, Shi D (2006) A carbon nanotube strain sensor for structural health monitoring. Smart Mater Struct 15:737CrossRefGoogle Scholar
  30. Kang D, Pikhitsa PV, Choi YW, Lee C, Shin SS, Piao L, Park B, Suh K-Y, T-i Kim, Choi M (2014) Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516:222CrossRefGoogle Scholar
  31. Kim JT, Pyo J, Rho J, Ahn J-H, Je JH, Margaritondo G (2012) Three-dimensional writing of highly stretchable organic nanowires. ACS Macro Lett 1:375–379CrossRefGoogle Scholar
  32. Kumar N, Jain PK, Tandon P, Pandey PM (2018) Additive manufacturing of flexible electrically conductive polymer composites via CNC-assisted fused layer modeling process. J Braz Soc Mech Sci Eng 40:175CrossRefGoogle Scholar
  33. Kwok SW, Goh KHH, Tan ZD, Tan STM, Tjiu WW, Soh JY, Ng ZJG, Chan YZ, Hui HK, Goh KEJ (2017) Electrically conductive filament for 3D-printed circuits and sensors. Appl Mater Today 9:167–175CrossRefGoogle Scholar
  34. Leigh SJ, Bradley RJ, Purssell CP, Billson DR, Hutchins DA (2012) A simple, low-cost conductive composite material for 3D printing of electronic sensors. PloS One 7:e49365CrossRefGoogle Scholar
  35. Li Q, Li J, Tran D, Luo C, Gao Y, Yu C, Xuan F (2017) Engineering of carbon nanotube/polydimethylsiloxane nanocomposites with enhanced sensitivity for wearable motion sensors. J Mater Chem C 5:11092–11099CrossRefGoogle Scholar
  36. Lipomi DJ, Vosgueritchian M, Tee BC, Hellstrom SL, Lee JA, Fox CH, Bao Z (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6:788CrossRefGoogle Scholar
  37. Liu Y, Rajadas A, Chattopadhyay A (2012) A biomimetic structural health monitoring approach using carbon nanotubes. Jom 64(7):802–807CrossRefGoogle Scholar
  38. Liu Z, Qi D, Guo P, Liu Y, Zhu B, Yang H, Liu Y, Li B, Zhang C, Yu J (2015) Thickness-gradient films for high gauge factor stretchable strain sensors. Adv Mater 27:6230–6237CrossRefGoogle Scholar
  39. Liu H, Huang W, Gao J, Dai K, Zheng G, Liu C, Shen C, Yan X, Guo J, Guo Z (2016) Piezoresistive behavior of porous carbon nanotube-thermoplastic polyurethane conductive nanocomposites with ultrahigh compressibility. Appl Phys Lett 108:011904CrossRefGoogle Scholar
  40. Lu N, Lu C, Yang S, Rogers J (2012) Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv Func Mater 22:4044–4050CrossRefGoogle Scholar
  41. Luo W, Charara M, Saha MC, Liu Y (2018) Fabrication and characterization of porous CNF/PDMS nanocomposites for sensing applications. Appl Nanosci 1–9Google Scholar
  42. Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO, Verma N, Gracias DH, McAlpine MC (2013) 3D printed bionic ears. Nano letters 13:2634–2639CrossRefGoogle Scholar
  43. Martinez RV, Branch JL, Fish CR, Jin L, Shepherd RF, Nunes RM, Suo Z, Whitesides GM (2013) Robotic tentacles with three-dimensional mobility based on flexible elastomers. Adv Mater 25:205–212CrossRefGoogle Scholar
  44. Michelis F, Bodelot L, Bonnassieux Y, Lebental B (2015) Highly reproducible, hysteresis-free, flexible strain sensors by inkjet printing of carbon nanotubes. Carbon 95:1020–1026CrossRefGoogle Scholar
  45. Obitayo W, Liu T (2012) A review: Carbon nanotube-based piezoresistive strain sensors. J Sens 2012:652438. CrossRefGoogle Scholar
  46. Park JJ, Hyun WJ, Mun SC, Park YT, Park OO (2015) Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl Mater Interfaces 7:6317–6324. CrossRefGoogle Scholar
  47. Ryu S, Lee P, Chou JB, Xu R, Zhao R, Hart AJ, Kim S-G (2015) Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 9:5929–5936. CrossRefGoogle Scholar
  48. Selvan NT, Eshwaran S, Das A, Stöckelhuber K, Wießner S, Pötschke P, Nando G, Chervanyov A, Heinrich G (2016) Piezoresistive natural rubber-multiwall carbon nanotube nanocomposite for sensor applications. Sens Actuators, A 239:102–113CrossRefGoogle Scholar
  49. Shofner M, Lozano K, Rodríguez-Macías F, Barrera E (2003) Nanofiber-reinforced polymers prepared by fused deposition modeling. J Appl Polym Sci 89:3081–3090CrossRefGoogle Scholar
  50. Truby RL, Wehner M, Grosskopf AK, Vogt DM, Uzel SG, Wood RJ, Lewis JA (2018) Soft somatosensitive actuators via embedded 3D printing. Adv Mater 30:1706383CrossRefGoogle Scholar
  51. Trung TQ, Ramasundaram S, Lee N-E (2017) Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics. Nano Res 10:2021–2033CrossRefGoogle Scholar
  52. Vatani M, Lu Y, Lee K-S, Kim H-C, Choi J-W (2013) Direct-write stretchable sensors using single-walled carbon nanotube/polymer matrix. J Electron Packag 135:011009CrossRefGoogle Scholar
  53. Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos Part B: Eng 110:442–458CrossRefGoogle Scholar
  54. Wei X, Li D, Jiang W, Gu Z, Wang X, Zhang Z, Sun Z (2015) 3D printable graphene composite. Sci Rep 5:11181CrossRefGoogle Scholar
  55. Wu S, Zhang J, Ladani RB, Ravindran AR, Mouritz AP, Kinloch AJ, Wang CH (2017) Novel electrically conductive porous PDMS/carbon nanofiber composites for deformable strain sensors and conductors. ACS Appl Mater Interfaces 9:14207–14215CrossRefGoogle Scholar
  56. Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata K (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6:296CrossRefGoogle Scholar
  57. Yu WW, Zhang J, Wu JR, Wang XZ, Deng YH (2017) Incorporation of graphitic nano-filler and poly (lactic acid) in fused deposition modeling. J Appl Polym Sci 134:44703. Google Scholar
  58. Zhang R, Deng H, Valenca R, Jin J, Fu Q, Bilotti E, Peijs T (2013) Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading. Compos Sci Technol 74:1–5CrossRefGoogle Scholar
  59. Zhang S, Cai L, Li W, Miao J, Wang T, Yeom J, Sepúlveda N, Wang C (2017) Fully printed silver-nanoparticle-based strain gauges with record high sensitivity. Adv Electr Mater 3:1700067CrossRefGoogle Scholar
  60. Zheng WJ, An N, Yang JH, Zhou J, Chen YM (2015) Tough Al-alginate/poly (N-isopropylacrylamide) hydrogel with tunable LCST for soft robotics. ACS Appl Mater Interfaces 7:1758–1764CrossRefGoogle Scholar
  61. Zheng Y, Li Y, Li Z, Wang Y, Dai K, Zheng G, Liu C, Shen C (2017) The effect of filler dimensionality on the electromechanical performance of polydimethylsiloxane based conductive nanocomposites for flexible strain sensors. Compos Sci Technol 139:64–73. CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.School of Aerospace and Mechanical EngineeringUniversity of OklahomaNormanUSA
  2. 2.School of Aerospace and Mechanical EngineeringUniversity of OklahomaNormanUSA
  3. 3.School of Aerospace and Mechanical EngineeringUniversity of OklahomaNormanUSA
  4. 4.School of Aerospace and Mechanical EngineeringUniversity of OklahomaNormanUSA

Personalised recommendations