Advertisement

Growth mechanism identification of sputtered single crystalline bismuth nanowire

  • Haiyang Hong
  • Lu Zhang
  • Chunyu Yu
  • Ziqi Zhang
  • Cheng LiEmail author
  • Songyan Chen
  • Wei Huang
  • Jianyuan Wang
  • Jianfang Xu
Original Article
  • 17 Downloads

Abstract

Single crystalline bismuth nanowire is recently considered as one of the most attractive low dimensional materials for the exploration of exotic higher-order topological properties. However, its growth mechanism by sputtering, which is regarded as one of the most cost-effective and simplest method, is still unrevealed. In this work, a bismuth nanowire growth model based on surface diffusion driven by chemical potential difference among crystal facets is proposed for sputtering method. The morphology evolution of bismuth nanowires is captured for the first time, and three corresponding growth stages are clearly discriminated. The possible self-catalyzed, stress-driven, and screw dislocation-driven nanowire growth mechanisms are precluded separately based on the theoretical and experimental data. The thoroughly understanding of growth mechanism is fundamental and necessary for fabrication of size-controllable bismuth nanowires and may pave the way for the preparation of other low dimensional materials and the investigation of novel physics.

Keywords

Bismuth Nanowire Sputtering Surface diffusion Single crystalline 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61474094) and National Basic Research Program of China (2013CB632103). The authors wish to thank Yunyong Zhang for the help of SEM tests and Shuhong Zhang for the assist of TEM and SAED characterization.

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare.

References

  1. Allen GL, Bayles RA, Gile WW, Jesser WA (1986) Small particle melting of pure metals. Thin Solid Films 144:297–308.  https://doi.org/10.1016/0040-6090(86)90422-0 CrossRefGoogle Scholar
  2. Benalcazar WA, Andrei Bernevig B, Hughes TL (2017) Quantized electric multipole insulators. Science 357:61–66.  https://doi.org/10.1126/science.aah6442 CrossRefGoogle Scholar
  3. Bierman MJ, Lau YKA, Kirt AV et al (2008) Dislocation-driven nanowire growth and Eshelby twist. Science 320:1060–1063.  https://doi.org/10.1126/science.1157131 CrossRefGoogle Scholar
  4. Cao S, Guo C, Wang Y et al (2009) Template-catalyst-free growth of single crystalline Bismuth nanorods by RF magnetron sputtering method. Solid State Commun 149:87–90.  https://doi.org/10.1016/j.ssc.2008.10.003 CrossRefGoogle Scholar
  5. Chason E, Sheldon BW, Freund LB et al (2002) Origin of compressive residual stress in polycrystalline thin films. Phys Rev Lett 88:4.  https://doi.org/10.1103/PhysRevLett.88.156103 CrossRefGoogle Scholar
  6. Cheng YT, Weiner AM, Wong CA et al (2002) Stress-induced growth of bismuth nanowires. Appl Phys Lett 81:3248–3250.  https://doi.org/10.1063/1.1515885 CrossRefGoogle Scholar
  7. Docherty R, Clydesdale G, Roberts KJ, Bennema P (1991) Application of Bravais–Friedel–Donnay–Harker, attachment energy and ising models to predicting and understanding the morphology of molecular crystals. J Phys D Appl Phys 24:89–99.  https://doi.org/10.1088/0022-3727/24/2/001 CrossRefGoogle Scholar
  8. Drozdov IK, Alexandradinata A, Jeon S et al (2014) One-dimensional topological edge states of bismuth bilayers. Nat Phys 10:664–669.  https://doi.org/10.1038/NPHYS3048 CrossRefGoogle Scholar
  9. Einstein A (1905) Uber d4e von der rnolekuZarh%net4schem Theorie der WUrme geforderte Bewegumg vow in ruhenden P Z ikss4ykeitem. Ann Phys 322:549–560.  https://doi.org/10.1002/andp.19053220806 CrossRefGoogle Scholar
  10. Floro JA, Chason E, Cammarata RC, Srolovitz DJ (2002) Physical origins of intrinsic stresses in Volmer–Weber thin films. MRS Bull 27:19–25.  https://doi.org/10.1557/mrs2002.15 CrossRefGoogle Scholar
  11. Lee HY, Wu BK, Chern MY (2013) Schottky photodiode fabricated from hydrogen-peroxide-treated ZnO nanowires. Appl Phys Express 6:2–5.  https://doi.org/10.7567/APEX.6.054103 Google Scholar
  12. Li L, Zhang Y, Li G, Zhang L (2003) A route to fabricate single crystalline bismuth nanowire arrays with different diameters. Chem Phys Lett 378:244–249.  https://doi.org/10.1016/S0009-2614(03)01264-8 CrossRefGoogle Scholar
  13. Li C, Kasumov A, Murani A et al (2014) Magnetic field resistant quantum interferences in Josephson junctions based on bismuth nanowires. Phys Rev B Condens Matter Mater Phys 90:1–5.  https://doi.org/10.1103/PhysRevB.90.245427 Google Scholar
  14. Lin YM, Sun X, Dresselhaus M (2000) Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires. Phys Rev B Condens Matter Mater Phys 62:4610–4623.  https://doi.org/10.1103/PhysRevB.62.4610 CrossRefGoogle Scholar
  15. Liu K, Chien C, Searson P (1998) Finite-size effects in bismuth nanowires. Phys Rev B Condens Matter Mater Phys 58:R14681–R14684.  https://doi.org/10.1103/PhysRevB.58.R14681 CrossRefGoogle Scholar
  16. Liu XY, Zeng JH, Zhang SY et al (2003) Novel bismuth nanotube arrays synthesized by solvothermal method. Chem Phys Lett 374:348–352.  https://doi.org/10.1016/S0009-2614(03)00730-9 CrossRefGoogle Scholar
  17. Murakami S (2006) Quantum spin hall effect and enhanced magnetic response by spin-orbit coupling. Phys Rev Lett 97:1–4.  https://doi.org/10.1103/PhysRevLett.97.236805 CrossRefGoogle Scholar
  18. Murani A, Kasumov A, Sengupta S et al (2017) Ballistic edge states in Bismuth nanowires revealed by SQUID interferometry. Nat Commun 8:1–20.  https://doi.org/10.1038/ncomms15941 CrossRefGoogle Scholar
  19. Olson EA, Efremov MY, Zhang M et al (2005) Size-dependent melting of Bi nanoparticles. J Appl Phys 97:034304.  https://doi.org/10.1063/1.1832741 CrossRefGoogle Scholar
  20. Schindler F, Cook AM, Vergniory MG et al (2018a) Higher-order topological insulators. Sci Adv 4:eaat0346.  https://doi.org/10.1126/sciadv.aat0346 CrossRefGoogle Scholar
  21. Schindler F, Wang Z, Vergniory MG et al (2018b) Higher-order topology in bismuth. Nat Phys 14:918–924.  https://doi.org/10.1038/s41567-018-0224-7 CrossRefGoogle Scholar
  22. Shim W, Ham J, Il Lee K et al (2009) On-film formation of Bi nanowires with extraordinary electron mobility. Nano Lett 9:18–22.  https://doi.org/10.1021/nl8016829 CrossRefGoogle Scholar
  23. Stanley SA, Stuttle C, Caruana AJ et al (2012) An investigation of the growth of bismuth whiskers and nanowires during physical vapour deposition. J Phys D Appl Phys 45:435304.  https://doi.org/10.1088/0022-3727/45/43/435304 CrossRefGoogle Scholar
  24. Tian Y, Guo CF, Guo S et al (2012) Bismuth nanowire growth under low deposition rate and its ohmic contact free of interface damage. AIP Adv 2:012112.  https://doi.org/10.1063/1.3679086 CrossRefGoogle Scholar
  25. Woo RL, Gao L, Goel N et al (2009) Kinetic control of self-catalyzed indium phosphide nanowires, nanocones, and nanopillars. Nano Lett 9:2207–2211.  https://doi.org/10.1021/nl803584u CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • Haiyang Hong
    • 1
  • Lu Zhang
    • 1
  • Chunyu Yu
    • 1
  • Ziqi Zhang
    • 1
  • Cheng Li
    • 1
    Email author
  • Songyan Chen
    • 1
  • Wei Huang
    • 1
  • Jianyuan Wang
    • 1
  • Jianfang Xu
    • 1
  1. 1.Semiconductor Photonics Research Center, OSED, Department of Physics, Jiujiang Research InstituteXiamen UniversityXiamenPeople’s Republic of China

Personalised recommendations