h-CaS and h-CaSe nanosheets in CaX (X = O, S, Se and Te) series: promising thermoelectric materials under DFT investigation

  • Kaptan Rajput
  • Debesh R. RoyEmail author
Original Article


The present work reports systematic study of a series of calcium chalcogenides CaX (X = O, S, Se and Te) in the architecture of rock-salt and hexagonal monolayer phases. Using first principle investigation within density functional theory (DFT) framework, we have computed the equilibrium structure and phonon dispersion curves for the dynamic stability, which follows the calculation of electronic properties like electronic band structure and projected density of state for the considered chalcogenide series. Furthermore, the thermoelectric properties such as thermal and electrical conductivities, Seebeck coefficient (S) and figure of merit (ZT) of the considered compounds are computed using the semi-classical Boltzmann transport equations (BTE). The present work reports the monolayer calcium chalcogenides as potential candidate for thermoelectric applications.


Calcium chalcogenides Density functional theory Band structure Density of states Thermoelectrics 



DRR is thankful to the SERB, New Delhi, Govt. of India for financial support (Grant no. EMR/2016/005830). KR is thankful to the SVNIT, Surat for his institute research fellowship (FIR-D17PH002). DRR and KR are also thankful for the High-Performance Computing facility at CDAC, Pune and IUAC, New Delhi.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abdus Salam MM (2018) Theoretical study of CaO, CaS and CaSe via first-principles calculations. Results Phys 10:934–945CrossRefGoogle Scholar
  2. Ahmad S, Mukherjee S (2014) A comparative study of electronic properties of bulk MoS2 and its monolayer using DFT technique: application of mechanical strain on MoS2 monolayer. Graphene 03:52CrossRefGoogle Scholar
  3. Asano S, Yamashita N, Nakao Y (1978) Luminescence of the Pb2+—ion dimer center in CaS and CaSe phosphors. Phys Status Solidi B 89:663–673CrossRefGoogle Scholar
  4. Charifi Z, Baaziz H, Hassan FEH, Bouarissa N (2005) High pressure study of structural and electronic properties of calcium chalcogenides. J Phys Condens Matter 17:4083–4092CrossRefGoogle Scholar
  5. Chen G, Dresselhaus MS, Dresselhaus G, Fleurial J-P, Caillat T (2003) Recent developments in thermoelectric materials. Int Mater Rev 48:45–66CrossRefGoogle Scholar
  6. Debnath B, Sarkar U, Debbarma M, Bhattacharjee R, Chattopadhyaya S (2018) Modification of band gaps and optoelectronic properties of binary calcium chalcogenides by means of doping of magnesium atom (s) in rock-salt phase—a first principle based theoretical initiative. J Solid State Chem 258:358–375CrossRefGoogle Scholar
  7. Ekbundit S, Chizmeshya A, LaViolette R, Wolf GH (1996) Theoretical and experimental investigation of the equations of state and phase stabilities of MgS and CaS. J Phys Condens Matter 8:8251CrossRefGoogle Scholar
  8. Gandi AN, Schwingenschlögl U (2016) Thermal conductivity of bulk and monolayer MoS2. EPL Europhys Lett 113:36002CrossRefGoogle Scholar
  9. Geim AK, Novoselov KS (2010) The rise of graphene. In: Nanoscience and technology: a collection of reviews from nature journals. World Scientific, Singapore, pp 11–19Google Scholar
  10. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502CrossRefGoogle Scholar
  11. Haase MA, Qiu J, DePuydt JM, Cheng H (1991) Blue-green laser diodes. Appl Phys Lett 59:1272–1274CrossRefGoogle Scholar
  12. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864CrossRefGoogle Scholar
  13. Karki BB, Crain J (1998) Structure and elasticity of CaO at high pressure. J Geophys Res Solid Earth 103:12405–12411CrossRefGoogle Scholar
  14. Khachai H, Khenata R, Haddou A, Bouhemadou A, Boukortt A, Soudini B, Boukabrine F, Abid H (2009) First-principles study of structural, electronic and elastic properties under pressure of calcium chalcogenides. Phys Proc 2:921–925CrossRefGoogle Scholar
  15. Khenata R, Sahnoun M, Baltache H, Rérat M, Rached D, Driz M, Bouhafs B (2006) Structural, electronic, elastic and high-pressure properties of some alkaline-earth chalcogenides: an ab initio study. Phys B Condens Matter 371:12–19CrossRefGoogle Scholar
  16. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133CrossRefGoogle Scholar
  17. Kokalj A (1999) XCrySDen—a new program for displaying crystalline structures and electron densities. J Mol Graph Model 17:176–179CrossRefGoogle Scholar
  18. Kumar V, Roy DR (2018) Structure, bonding, stability, electronic, thermodynamic and thermoelectric properties of six different phases of indium nitride. J Mater Sci 53:8302–8313CrossRefGoogle Scholar
  19. Kumar S, Schwingenschlogl U (2015) Thermoelectric response of bulk and monolayer MoSe2 and WSe2. Chem Mater 27:1278–1284CrossRefGoogle Scholar
  20. Luo H, Greene RG, Ghandehari K, Li T, Ruoff AL (1994) Structural phase transformations and the equations of state of calcium chalcogenides at high pressure. Phys Rev B 50:16232–16237CrossRefGoogle Scholar
  21. Madsen GK, Singh DJ (2006) BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys Commun 175:67–71CrossRefGoogle Scholar
  22. Mammone JF, Mao HK, Bell PM (1981) Equations of state of CaO under static pressure conditions. Geophys Res Lett 8:140–142CrossRefGoogle Scholar
  23. Pandey R, Sivaraman S (1991) Spectroscopic properties of defects in alkaline-earth sulfides. J Phys Chem Solids 52:211–225CrossRefGoogle Scholar
  24. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865CrossRefGoogle Scholar
  25. Philipsen PHT, Baerends EJ (1996) Cohesive energy of 3D transition metals: density functional theory atomic and bulk calculations. Phys Rev B 54:5326CrossRefGoogle Scholar
  26. Popescu M (2006) Chalcogenides—past, present, future. J Non-Cryst Solids 352:887–891CrossRefGoogle Scholar
  27. Poudeu PF, D’Angelo J, Downey AD, Short JL, Hogan TP, Kanatzidis MG (2006) High thermoelectric figure of merit and nanostructuring in bulk p-type Na1–xPbmSbyTem+2. Angew Chem Int Ed 45:3835–3839CrossRefGoogle Scholar
  28. Rodríguez-Hernández P, Radescu S, Muñoz A (2002) Relative stability of calcium chalcogenides from ab initio theory. High Press Res 22:459–463CrossRefGoogle Scholar
  29. SArya B, Aynyas M, Sanyal SP (2008) High pressure study of structural and elastic properties of barium chalcogenides. Appl Phys 46:5Google Scholar
  30. Shah EV, Roy DR (2018) Density functional investigation on hexagonal nanosheets and bulk thallium nitrides for possible thermoelectric applications. Appl Nanosci 9:33–42CrossRefGoogle Scholar
  31. Shayeganfar F, Vasu KS, Nair RR, Peeters FM, Neek-Amal M (2017) Monolayer alkali and transition-metal monoxides: MgO, CaO, MnO, and NiO. Phys Rev B 95:144109CrossRefGoogle Scholar
  32. Smet PF, Moreels I, Hens Z, Poelman D (2010) Luminescence in sulfides: a rich history and a bright future. Materials 3:2834–2883CrossRefGoogle Scholar
  33. Stepanyuk VS, Szász A, Farberovich OV, Grigorenko AA, Kozlov AV, Mikhailin VV (1989) An electronic band structure calculation and the optical properties of alkaline-earth sulphides. Phys Status Solidi B 155:215–220CrossRefGoogle Scholar
  34. Tyagi K, Gahtori B, Bathula S, Srivastava AK, Shukla AK, Auluck S, Dhar A (2014) Thermoelectric properties of Cu3SbSe3 with intrinsically ultralow lattice thermal conductivity. J Mater Chem A 2:15829–15835CrossRefGoogle Scholar
  35. Wang C, Guo J, Dong L, Aiyiti A, Xu X, Li B (2016) Superior thermal conductivity in suspended bilayer hexagonal boron nitride. Sci Rep 6:25334CrossRefGoogle Scholar
  36. Wood C (1988) Materials for thermoelectric energy conversion. Rep Prog Phys 51:459CrossRefGoogle Scholar
  37. Zheng H, Li X-B, Chen N-K, Xie S-Y, Tian WQ, Chen Y, Xia H, Zhang SB, Sun H-B (2015) Monolayer II-VI semiconductors: A first-principles prediction. Phys Rev B 92:115307CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  1. 1.Materials and Biophysics Group, Department of Applied PhysicsS. V. National Institute of TechnologySuratIndia

Personalised recommendations