Advertisement

Facile synthesis of molybdenum multisulfide composite nanorod arrays from single-source precursor for photoelectrochemical hydrogen generation

  • Chu Er Lim
  • Mei Lee OoiEmail author
  • Richard C. S. Wong
  • Kian Eang Neo
  • Asad Mumtaz
  • Muhammad Mazhar
  • Norani Muti Mohamed
  • Mohamed Shuaib Mohamed Saheed
Original Article

Abstract

The deposition of molybdenum multisulfide thin-film photoanodes from the metal–organic precursor [CpMo(SMe)2]2 (1), at different deposition time has been investigated. Four different films were deposited at 550 °C under constant argon gas flow for 10, 15, 20, and 25 min, respectively. The surface morphology of these films analyzed with FE-SEM and AFM showed the presence of compact 1D rod-like structure of MoS2/Mo2S3in a homogeneous form. The average diameter of the 1D compact MoS2/Mo2S3 composite nanorod arrays was found in the range of 155–298 nm deposited for different time durations. EDX analysis showed a consistency where the Mo-to-S ratio was approximately 3:4.5 and demonstrated the overall composition of the 1D MoS2/Mo2S3 composite nanorod arrays. The XRD analysis of the thin film indicated the presence of monoclinic Mo2S3 and rhombohedral MoS2composite system. Moreover, the photocurrent density of 20 min deposited thin film is observed to be 4 mA/cm2 with highest photosensitivity of 6.78 at the overpotential of 0.3 V vs Ag/AgCl under the simulated light intensity of 100 mW/cm2 (AM 1.5G). The electrochemical impedance spectroscopy (EIS) also showed improved charge transportation with highest lifetime of the photoexcited charges in 20 min deposited thin film in comparison to the other deposition time durations. This study provides the optimized synthesis conditions for producing molybdenum-based multisulfide nanostructures and the deposition duration for their deployment in solar-based devices.

Graphical abstract

Complex [CpMo(SMe)2]2 (1) has been used as a single source precursor for fabrication of MoS2/Mo2S3 composite nanorod arrays on FTO glass substrate and tested for photoelectrochemical hydrogen generation.

Keywords

Single-source precursor MoS2/Mo2S3 composite Thin films Visible light photocatalytic activity 

Notes

Acknowledgements

The presented work is supported by Funding from Universiti Tunku Abdul Rahman (UTARRF 6200/O10) and FRGS FP038-2016. Technical support from Mr. Ooh Keng Fai and Mr. Goh Wee Sheng is gratefully acknowledged.

Supplementary material

13204_2019_957_MOESM1_ESM.7z (17.7 mb)
Supplementary material 1 (7Z 18113 KB)

References

  1. Al-Namshah KS, Mohamed RM (2018) Nd-doped Bi2O3 nanocomposites: simple synthesis and improved photocatalytic activity for hydrogen production under visible light. Appl Nanosci 1233–1239Google Scholar
  2. Bashiri R, Mohamed NM, Suhaimi NA, Shahid MU, Kait CF, Sufian S, Khatani M, Mumtaz A (2018) Photoelectrochemical water splitting with tailored TiO2/3@g-C3N4 heterostructure nanorod in photoelectrochemical cell. Diam Relat Mater 85:5–12CrossRefGoogle Scholar
  3. Benson J, Li M, Wang S, Wang P, Papakonstantinou P (2015) Electrocatalytic hydrogen evolution reaction on edges of a few layer molybdenum disulfide nanodots. ACS Appl Mater Inter 7:14113–14122CrossRefGoogle Scholar
  4. Cao B, Veith GM, Neuefeind JC, Adzic RR, Khalifah PG (2013) Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J Am Chem Soc 135:19186–19192CrossRefGoogle Scholar
  5. Cheng WH, Richter MH, May MM, Ohlmann J, Lackner D, Dimroth F, Hannappel T, Atwater HA, Lewerenz HJ (2018) Monolithic photoelectrochemical device for direct water splitting with 19% efficiency. ACS Energy Lett 3:1795–1800CrossRefGoogle Scholar
  6. Cheon J, Gozum JE, Girolami GS (1997) Chemical vapor deposition of MoS2 and TiS2 films from the metal–organic precursors Mo (S-t-Bu)4 and Ti(S-t-Bu)4. Chem Mater 9:1847–1853CrossRefGoogle Scholar
  7. Ding Q, Song B, Xu P, Jin S (2016) Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds. Chem 1:699–726CrossRefGoogle Scholar
  8. Fatahi P, Roy A, Bahrami M, Hoseini SJ (2018) Visible-light-driven efficient hydrogen production from CdS nanorods anchored with co-catalysts based on transition metal alloy nanosheets of NiPd, NiZn and NiPdZn. ACS Appl Energy Mater 1:5318–5327Google Scholar
  9. Garadkar K, Patil A, Hankare P, Chate P, Sathe D, Delekar S (2009) MoS2: Preparation and their characterization. J Alloy Compd 487:786–789CrossRefGoogle Scholar
  10. Gough JJ, McEvoy N, O’Brien M, Bell AP, McCloskey D, Boland JB, Coleman JN, Duesberg GS, Bradley AL (2018) Dependence of photocurrent enhancements in quantum dot (QD)-sensitized MoS2 devices on MoS2 film properties. Adv Funct Mater 1706149Google Scholar
  11. Guo Y, Fu X, Peng Z (2017) Growth and mechanism of MoS2 nanoflowers with ultrathin nanosheets. J Nanomater 16:1–6Google Scholar
  12. Hou Y, Zuo F, Dagg A, Feng P (2013) A three-dimensional branched cobalt-doped α-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. Angew Chem Int Ed 52:1248–1252CrossRefGoogle Scholar
  13. Jia J, Zhou W, Li G, Yang L, Wei Z, Cao L, Wu Y, Zhou K, Chen S (2017) Regulated synthesis of Mo sheets and their derivative MoX sheets (X: P, S, or C) as efficient electrocatalysts for hydrogen evolution reactions. ACS Appl Mater Inter 9:8041–8046CrossRefGoogle Scholar
  14. Khalyavka T, Bondarenko M, Shcherban N, Petrik I, Melnyk A (2018) Effect of the C and S additives on structural, optical, and photocatalytic properties of TiO2. Appl Nanosci 1–8Google Scholar
  15. Kim JH, Jang JW, Jo YH, Abdi FF, Lee YH, Van De Krol R, Lee JS (2016) Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting. Nat Commun 7:13380CrossRefGoogle Scholar
  16. King RB (1963) Organosulfur derivatives of the metal carbonyls. V. The reactions between certain organic sulfur compounds and various cyclopentadienyl metal carbonyl derivatives. J Am Chem Soc 85:1587–1590CrossRefGoogle Scholar
  17. Kosar S, Pihosh Y, Turkevych I, Mawatari K, Uemura J, Kazoe Y, Makita K, Sugaya T, Matsui T, Fujita D (2016) Tandem photovoltaic-photoelectrochemical GaAs/InGaAsP-WO3/BiVO4 device for solar hydrogen generation. Jpn J Appl Phys 55:04ES01CrossRefGoogle Scholar
  18. Kosar S, Pihosh Y, Bekarevich R, Mitsuishi K, Mawatari K, Kazoe Y, Kitamori T, Tosa M, Tarasov AB, Goodilin EA (2018) Highly efficient photocatalytic conversion of solar energy to hydrogen by WO3/BiVO4 core-shell heterojunction nanorods. Appl Nanosci 1–8Google Scholar
  19. Kudo A (2007) Photocatalysis and solar hydrogen production. Pure Appl Chem 79:1917–1927CrossRefGoogle Scholar
  20. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278CrossRefGoogle Scholar
  21. Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S (2010) Anomalous lattice vibrations of single and few-layer MoS2. ACS Nano 4:2695–2700CrossRefGoogle Scholar
  22. Li H, Zhang Q, Yap CCR, Tay BK, Edwin THT, Olivier A, Baillargeat D (2012) From bulk to monolayer MoS2: evolution of raman scattering. Adv Funct Mater 22:1385–1390CrossRefGoogle Scholar
  23. Lin H, Chen X, Li H, Yang M, Qi Y (2010) Hydrothermal synthesis and characterization of MoS2 nanorods. Mater Lett 64:1748–1750CrossRefGoogle Scholar
  24. Ma B, Guan PY, Li QY, Zhang M, Zang SQ (2016a) MOF-derived flower-like MoS2@TiO2 nanohybrids with enhanced activity for hydrogen evolution. ACS Appl Mater Inter 8:26794–26800CrossRefGoogle Scholar
  25. Ma L, Chen K, Nan F, Wang JH, Yang DJ, Zhou L, Wang QQ (2016b) Improved hydrogen production of Au-Pt-CdS hetero-nanostructures by efficient plasmon-induced multipathway electron transfer. Adv Funct Mater 26:6076–6083CrossRefGoogle Scholar
  26. Mumtaz A, Mohamed NM, Mazhar M, Ehsan MA, Mohamed Saheed MS (2016a) Core–shell vanadium modified titania@ β-In2S3 hybrid nanorod arrays for superior interface stability and photochemical activity. ACS Appl Mater Inter 8:9037–9049CrossRefGoogle Scholar
  27. Mumtaz A, Mohamed NM, Saheed MSM, Yar A, Irshad MI (2016b) Enhanced photoelectrochemical activity by nanostructured V2O5/TiO2 bilayer. AIP Conf Proc 030001Google Scholar
  28. Murugadoss G, Jayavel R, Kumar RM, Thangamuthu R (2016) Synthesis, optical, photocatalytic, and electrochemical studies on Ag2S/ZnS and ZnS/Ag2S nanocomposites. Appl Nanosci 6:503–510CrossRefGoogle Scholar
  29. Murugesan S, Akkineni A, Chou BP, Glaz MS, Vanden Bout DA, Stevenson KJ (2013) Room temperature electrodeposition of molybdenum sulfide for catalytic and photoluminescence applications. ACS Nano 7:8199–8205CrossRefGoogle Scholar
  30. Naeem R, Yahya R, Mansoor MA, Teridi MAM, Sookhakian M, Mumtaz A (2017) Photoelectrochemical water splitting over mesoporous CuPbI3 films prepared by electrophoretic technique. Monatsh Chem 148:981–989CrossRefGoogle Scholar
  31. Savjani N, Brent JR, O’Brien P (2015) AACVD of molybdenum sulfide and oxide thin films from molybdenum (V)-based single-source precursors. Chem Vapor Depos 21:71–77CrossRefGoogle Scholar
  32. Schmidt H, Wang S, Chu L, Toh M, Kumar R, Zhao W, Castro Neto AH, Martin J, Adam S, Ozyilmaz B, Eda G (2014) Transport properties of monolayer MoS2 by chemical vapor deposition. ACS Nano 4:1909–1913Google Scholar
  33. Tang C, Wang W, Sun A, Qi C, Zhang D, Wu Z (2015) Sulfur-decorated molybdenum carbide catalysts for enhanced hydrogen evolution. ACS Catal 5:6956–6963CrossRefGoogle Scholar
  34. Ting LRL, Deng Y, Ma L, Zhang YJ, Peterson AA, Yeo BS (2016) Catalytic activities of sulfur atoms in amorphous molybdenum sulfide for the electrochemical hydrogen evolution reaction. ACS Catal 6:861–867CrossRefGoogle Scholar
  35. Wang YY, Li AZ, Wang YH, Liang Y, Jiang J, Nan HY, Ni ZH, Wang D, Zhong B, Wen GW (2016) Determination of the thickness of two-dimensional transition-metal dichalcogenide by the Raman intensity of the substrate. Mater Res Express 3:025007CrossRefGoogle Scholar
  36. Wei R, Yang H, Du K, Fu W, Li M, Yu Q, Chang L, Zeng Y, Sui Y, Zhu H, Zou G (2007) Preparation of type-II MoS2 film by chemical bath deposition onto Si coated with electrolessly Ni. Mater Sci Eng B 138:259–262CrossRefGoogle Scholar
  37. Woods JM, Jung Y, Xie Y, Liu W, Liu Y, Wang H, Cha JJ (2016) One-step synthesis of MoS2/WS2 layered heterostructures and catalytic activity of defective transition metal dichalcogenide films. ACS Nano 10:2004–2009CrossRefGoogle Scholar
  38. Ye G, Gong Y, Lin J, Li B, He Y, Pantelides ST, Zhou W, Vajtai R, Ajayan PM (2016) Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett 16:1097–1103CrossRefGoogle Scholar
  39. Zhang LF, Ou G, Gu L, Peng ZJ, Wang LN, Wu H (2016) A highly active molybdenum multisulfide electrocatalyst for the hydrogen evolution reaction. RSC Adv 6:107158–107162CrossRefGoogle Scholar
  40. Zhukovskyi M, Tongying P, Yashan H, Wang Y, Kuno M (2015) Efficient photocatalytic hydrogen generation from Ni nanoparticle decorated CdS nanosheets. ACS Catal 5:6615–6623CrossRefGoogle Scholar

Copyright information

© King Abdulaziz City for Science and Technology 2019

Authors and Affiliations

  • Chu Er Lim
    • 1
  • Mei Lee Ooi
    • 1
    Email author
  • Richard C. S. Wong
    • 2
  • Kian Eang Neo
    • 1
  • Asad Mumtaz
    • 3
    • 5
  • Muhammad Mazhar
    • 3
    • 4
  • Norani Muti Mohamed
    • 5
  • Mohamed Shuaib Mohamed Saheed
    • 5
  1. 1.Department of Chemical ScienceUniversiti of Tunku Abdul RahmanKamparMalaysia
  2. 2.Department of ChemistryUniversity of MalayaKuala LumpurMalaysia
  3. 3.School of Natural SciencesNational University of Sciences and TechnologyIslamabadPakistan
  4. 4.Department of Environmental SciencesFatima Jinnah Women UniversityRawalpindiPakistan
  5. 5.Centre of Innovative Nanostructures and Nanodevices (COINN), Department of Fundamental and Applied SciencesUniversiti Teknologi PETRONASBandar Seri IskandarMalaysia

Personalised recommendations