Applied Nanoscience

, Volume 9, Issue 3, pp 341–352 | Cite as

Synthesis, characterisation and formation mechanism of Sn-0.75 Cu solder nanoparticles by pulsed wire discharge

  • Prem Ranjan
  • Duy Hieu Nguyen
  • Kenta Tanaka
  • H. Suematsu
  • R. Jayaganthan
  • R. SarathiEmail author
Original Article


Pulsed wire discharge is used to produce Sn-0.75 Cu nanoparticles (NPs) from Sn-0.75 Cu solder wire in argon ambient. The energy stored in the capacitor (W), which is in the multiple of the sublimation energy of the wire, is discharged through the wire at different pressure of argon. All the particles are spherical in shape with minimum mean particle size of about 28 nm. Deposited energy to the wire increases with increase in W and time to melt of the wire after the injection of current reduces with increase in capacitor voltage. XRD shows peaks corresponding to Sn with no presence of Cu for all the cases. EDAX confirms the presence of Cu. Reduction in melting point of NPs with decreasing size is observed with theoretical and DSC study. Reduction in particle size is observed with increasing energy ratio, K (ratio of W to sublimation energy of the wire) and/or decreasing pressure, P of Argon gas; confirmed with experimental measurement of particle size done with transmission electron microscope (TEM) micrographs and, theoretical calculation of activation energy and nucleation rate of NPs formation.


Nanoparticle Pulsed wire discharge Wire explosion Sn-0.75 Cu Solder 



  1. Abtew M, Selvaduray G (2000) Lead-free solders in microelectronics. Mater Sci Eng R Reports 27:95–141. CrossRefGoogle Scholar
  2. Arai Yasuo (1996) Chemistry of powder production,1st ed. Chapman & Hall, LondonCrossRefGoogle Scholar
  3. Bennett FD (1964) Initial heating rates and energy inputs for exploding wires. Phys Fluids 7:147–148. CrossRefGoogle Scholar
  4. Bennett FD (1966) Nonlinear equations for circuits containing exploding wires. Phys Fluids 9:471–477. CrossRefGoogle Scholar
  5. Bennett FD, Burden HS, Shear DD (1962) Correlated electrical and optical measurements of exploding wires. Phys Fluids 5:102. CrossRefGoogle Scholar
  6. Callister WD, Rethwisch DG (2010) Materials science and engineering: an introduction, 8th edn. John Wiley & Sons, New YorkGoogle Scholar
  7. Cheng S, Huang C, Pecht M (2017) Microelectronics reliability review paper a review of lead-free solders for electronics applications. Microelectron Reliab 75:77–95. CrossRefGoogle Scholar
  8. Chukka RN, Telu S, Nrmr B, Chen L (2011) A novel method of reducing melting temperatures in SnAg and SnCu solder alloys. J Mater Sci Mater Electron 22:281–285. CrossRefGoogle Scholar
  9. Demayo A, Taylor MC, Taylor KW et al (1982) Toxic effects of lead and lead compounds on human health, aquatic life, wildlife plants, and livestock. C R C Crit Rev Environ Control 12:257–305. CrossRefGoogle Scholar
  10. Gao F, Mukherjee S, Cui Q, Gu Z (2009a) Synthesis, characterization, and thermal properties of nanoscale lead-free solders on multisegmented metal nanowires. J Phys Chem C 113:9546–9552. CrossRefGoogle Scholar
  11. Gao Y, Zou C, Yang B et al (2009b) Nanoparticles of SnAgCu lead-free solder alloy with an equivalent melting temperature of SnPb solder alloy. J Alloys Compd 484:777–781. CrossRefGoogle Scholar
  12. Glazer J (1994) Microstructure and mechanical properties of Pb-free solder alloys for low-cost electronic assembly: A review. J Electron Mater 23:693–700. CrossRefGoogle Scholar
  13. Glazer J (1995) Metallurgy of low temperature Pb-free solders for electronic assembly. Int Mater Rev 40:65–93. CrossRefGoogle Scholar
  14. Haynes WM (2014) CRC handbook of chemistry and physics, 95th edn. CRC Press, Boca RatonGoogle Scholar
  15. Hayt WH, Kemmerly JE, Durbin SM (2002) Engineering Circuit Analysis. 6th edn, Tata McGraw-Hill, New DelhiGoogle Scholar
  16. Jiang W, Yatsui K (1998) Pulsed wire discharge for nanosize powder synthesis. IEEE Trans Plasma Sci 26:1498–1501. CrossRefGoogle Scholar
  17. Kim DS, Kim JH, Suematsu H et al (2016) Role of voltage and gas in determining the mean diameter in Sn-58 Bi intermetallic compound nanoparticles for pulsed wire discharge. Met Mater Int 22:319–323. CrossRefGoogle Scholar
  18. Koppes JP, Grossklaus KA, Muza AR et al (2012) Utilizing the thermodynamic nanoparticle size effects for low temperature Pb-free solder. Mater Sci Eng B Solid State Mater Adv Technol 177:197–204. CrossRefGoogle Scholar
  19. Kotov Y (2003) Electric explosion of wires as a method for preparation of nanopowders. J Nanoparticle Res 5:539–550. CrossRefGoogle Scholar
  20. Krehlt P (1973) The magnetic pressure in cylindrical wires and rectangular rods, and the inverse pinch effect. 6:2187–2199.
  21. Kuskova NI, Tkachenko SI, Koval SV (1997) Investigation of liquid metallic wire heating dynamics. J Phys Condens Matter 9:6175–6184. CrossRefGoogle Scholar
  22. Manko HH (1979) Solder and Soldering, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  23. Miyazawa Y, Ariga T (1999) Microstructural Change and Hardness of Lead Free Solder Alloys. Proc. 1st Int. Symp. On Environ. Conscious Design (Los Alamitos, CA: IEEE Comput. Soc., 1999) 616–619Google Scholar
  24. Olson EA, Efremov MY, Zhang M et al (2005) Size-dependent melting of Bi nanoparticles. J Appl Phys 97:3. CrossRefGoogle Scholar
  25. Ranjan P, kumar LS, Suematsu H et al (2017) Thermodynamic analysis of ZnO nanoparticle formation by wire explosion process and characterisation. Ceram Int 43:6709–6720. CrossRefGoogle Scholar
  26. Ranjan P, Nakagawa S, Suematsu H, Sarathi R (2018) Synthesis and photocatalytic activity of anatase/rutile TiO2 nanoparticles by wire explosion process. Ina Lett. Google Scholar
  27. Simchi A, Ahmadi R, Reihani SMS, Mahdavi A (2007) Kinetics and mechanisms of nanoparticle formation and growth in vapor phase condensation process. Mater Des 28:850–856. CrossRefGoogle Scholar
  28. Suematsu H, Ikeuchi T, Kinemuchi Y et al (2002) Repetitive pulsed wire discharge for applications to material science. In: Conference record of the twenty-fifth international power modulator symposium, 2002 and 2002 high-voltage workshop, Hollywood, CA, USA, pp 138–141.
  29. Tokoi Y, Suzuki T, Nakayama T et al (2010) Preparation of titanium nanopowders covered with organics by pulsed wire discharge. Scr Mater 63:937–940. CrossRefGoogle Scholar
  30. Vlastós AE (1973) Dwell times of thin exploding wires. J Appl Phys 44:2193–2196. CrossRefGoogle Scholar
  31. Wronski CRM (2002) The size dependence of the melting point of small particles of tin. Br J Appl Phys 18:1731–1737. CrossRefGoogle Scholar
  32. Zou C, Gao Y, Yang B (2010a) Synthesis and DSC study on Sn3. 5Ag alloy nanoparticles used for lower melting temperature solder. 868–874.
  33. Zou C, Gao Y, Yang B, Zhai Q (2010b) Melting and solidification properties of the nanoparticles of Sn3.0Ag0.5Cu lead-free solder alloy. Mater Charact 61:474–480. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Prem Ranjan
    • 1
  • Duy Hieu Nguyen
    • 2
  • Kenta Tanaka
    • 2
  • H. Suematsu
    • 2
  • R. Jayaganthan
    • 3
  • R. Sarathi
    • 1
    Email author
  1. 1.Department of Electrical EngineeringIIT MadrasChennaiIndia
  2. 2.Extreme Energy-Density Research InstituteNagaoka University of TechnologyNagaokaJapan
  3. 3.Department of Engineering DesignIIT MadrasChennaiIndia

Personalised recommendations