Applied Nanoscience

, Volume 9, Issue 3, pp 317–326 | Cite as

Enhancement of caffeine adsorption on boron nitride fullerene by silicon doping

  • V. Rosiles González
  • A. Escobedo-Morales
  • D. Cortés-Arriagada
  • Ma. de L. Ruiz Peralta
  • E. Chigo AnotaEmail author
Original Article


The physicochemical interaction between undoped- (B24N36; BNF) and silicon-doped boron nitride (B24N35Si; Si-BNF) fullerenes with caffeine was studied in the frame of the density functional theory (DFT). The influence of chemical composition in the capability of the fullerene to interact with caffeine was analyzed in terms of its structural stability, adsorption energy and charge distribution. The obtained results show that caffeine adsorption is enhanced by Si doping. The adsorption energy of caffeine molecule onto the BNF was calculated to be − 0.26 eV, whereas it was − 0.33 eV after doping. This effect is attributed to a rearrangement of the charge density driven by the substitutional defect (SiN). After caffeine adsorption, an electron density displacement from the Si–BNF to the sorbate which stabilizes the caffeine/Si–BNF system is identified. Moreover, Si doping decreases the chemical hardness, while it induces a net spin angular momentum in the fullerene. The magnetic moment of the Si–BNF was determined in 1.0 µB, which does not vanish after caffeine adsorption. The physicochemical parameters of the Si–BNF, along with its magnetic behavior, could favor using it as nanovehicle for drug delivery.


Boron nitride fullerene Caffeine Adsorption Drug delivery 



This work was partially supported by the projects VIEP-BUAP (CHAE-ING18-G), CONICYT/FONDECYT Iniciación en Investigación no. 11170289, and CONICYT/PCI REDI170303. We thank the support given by the National Laboratory Supercomputing Southeast housed in the BUAP.

Supplementary material

13204_2018_901_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1301 KB)


  1. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170. CrossRefGoogle Scholar
  2. Bader RFW (1985) Atoms in molecules. Acc Chem Res 18:9–15. CrossRefGoogle Scholar
  3. Barone V, Peralta JE (2008) Magnetic boron nitride nanoribbons with tunable electronic properties. Nano Lett 8:2210–2214. CrossRefGoogle Scholar
  4. Bergveld P, Hendrikse J, Olthuis W (1998) Theory and application of the material work function for chemical sensors based on the field effect principle. Meas Sci Technol 9:1801–1808. CrossRefGoogle Scholar
  5. Boese AD, Handy NC (2001) A new parametrization of exchange–correlation generalized gradient approximation functionals. J Chem Phys 114:5497–5503. CrossRefGoogle Scholar
  6. Chigo-Anota E, Escobedo-Morales A, Hernández-Cocoletzi H, López y López JG (2015) Nitric oxide adsorption on non-stoichiometric boron nitride fullerene: structural stability, physicochemistry and drug delivery perspectives. Phys E Low Dimens Syst Nanostructures 74:538–543. CrossRefGoogle Scholar
  7. Ciofani G, Genchi GG, Liakos I et al (2012) A simple approach to covalent functionalization of boron nitride nanotubes. J Colloid Interface Sci 374:308–314. CrossRefGoogle Scholar
  8. Cramer RE, Ho DM, Van Doorne W et al (1981) Triphenylmethylphosphonium trichloro(caffeine)platinum(II) [P(C6H5)3(CH3)][PtCl3(caffeine)], structure and anticancer activity. Inorg Chem 20:2457–2461. CrossRefGoogle Scholar
  9. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517. CrossRefGoogle Scholar
  10. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764. CrossRefGoogle Scholar
  11. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728. CrossRefGoogle Scholar
  12. Edwards HGM, Farwell DW, De Oliveira LFC et al (2005) FT-Raman spectroscopic studies of guarana and some extracts. Anal Chim Acta 532:177–186. CrossRefGoogle Scholar
  13. Fisone G, Borgkvist A, Usiello A (2004) Caffeine as a psychomotor stimulant: mechanism of action. Cell Mol Life Sci 61:857–872. CrossRefGoogle Scholar
  14. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, revision C.01, Gaussian 09 revis B01. Gaussian Inc., WallingfordGoogle Scholar
  15. Galvan M, Vela A, Gazquez JL (1988) Chemical reactivity in spin-polarized density functional theory. J Phys Chem 92:6470–6474. CrossRefGoogle Scholar
  16. Grabowski SJ (2001) An estimation of strength of intramolecular hydrogen bonds—ab initio and AIM studies. J Mol Struct 562:137–143. CrossRefGoogle Scholar
  17. Hao S, Zhou G, Duan W et al (2006) Tremendous spin-splitting effects in open boron nitride nanotubes: application to nanoscale spintronic devices. J Am Chem Soc 128:8453–8458. CrossRefGoogle Scholar
  18. Haynes WM (2013) CRC handbook of chemistry and physics, 94th edn. CRC Press, Boca RatonGoogle Scholar
  19. Johnson ER, Keinan S, Mori-Sánchez P et al (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506. CrossRefGoogle Scholar
  20. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138. CrossRefGoogle Scholar
  21. Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1:104–113. CrossRefGoogle Scholar
  22. Lee H-J, Kim G, Kwon Y-K (2013) Molecular adsorption study of nicotine and caffeine on single-walled carbon nanotubes from first principles. Chem Phys Lett 580:57–61. CrossRefGoogle Scholar
  23. Li X, Zhi C, Hanagata N et al (2013) Boron nitride nanotubes functionalized with mesoporous silica for intracellular delivery of chemotherapy drugs. Chem Commun 49:7337. CrossRefGoogle Scholar
  24. Li X, Wang X, Zhang J et al (2017) Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment. Nat Commun 8:13936. CrossRefGoogle Scholar
  25. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimCrossRefGoogle Scholar
  26. Nurminen M-L, Niittynen L, Korpela R, Vapaatalo H (1999) Coffee, caffeine and blood pressure: a critical review. Eur J Clin Nutr 53:831–839. CrossRefGoogle Scholar
  27. O’Neil MJ, Heckelman PE, Koch CB, Roman KJ (2006) The Merck index: an encyclopedia of chemicals, drugs, and biologicals, 14th edn. Merck & Co. Inc., Whitehouse StationGoogle Scholar
  28. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516. CrossRefGoogle Scholar
  29. Parr RG, Yang W (1995) Density-functional theory of the electronic structure of molecules. Annu Rev Phys Chem 46:701–728. CrossRefGoogle Scholar
  30. Scrocco E, Tomasi J (1981) Chemical applications of atomic and molecular electrostatic potentials. Springer, BostonGoogle Scholar
  31. Shin H, Guan J, Zgierski MZ et al (2015) Covalent functionalization of boron nitride nanotubes via reduction chemistry. ACS Nano 9:12573–12582. CrossRefGoogle Scholar
  32. Soltani A, Baei MT, Tazikeh Lemeski E, Shahini M (2014) Sensitivity of BN nano-cages to caffeine and nicotine molecules. Superlattices Microstruct 76:315–325. CrossRefGoogle Scholar
  33. Sukhorukova IV, Zhitnyak IY, Kovalskii AM et al (2015) Boron nitride nanoparticles with a petal-like surface as anticancer drug-delivery systems. ACS Appl Mater Interfaces 7:17217–17225. CrossRefGoogle Scholar
  34. Sun C, Lee J, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265. CrossRefGoogle Scholar
  35. Traganos F, Kapuscinski J, Darzynkiewicz Z (1991) Caffeine modulates the effects of DNA-intercalating drugs in vitro: a flow cytometric and spectrophotometric analysis of caffeine interaction with novantrone, doxorubicin, ellipticine, and the doxorubicin analogue AD1981. Cancer Res 51:3682–3689Google Scholar
  36. Tsuneda T (2014) Density functional theory in quantum chemistry. Springer, TokyoCrossRefGoogle Scholar
  37. Ulbrich K, Holá K, Šubr V et al (2016) Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 116:5338–5431. CrossRefGoogle Scholar
  38. Weinberg BA, Bealer BK (2001) The world of caffeine: the science and culture of the world’s most popular drug. Routledge, New YorkGoogle Scholar
  39. Weng Q, Wang B, Wang X et al (2014) Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery. ACS Nano 8:6123–6130. CrossRefGoogle Scholar
  40. Wu J, Yin L (2011) Platinum nanoparticle modified polyaniline-functionalized boron nitride nanotubes for amperometric glucose enzyme biosensor. ACS Appl Mater Interfaces 3:4354–4362. CrossRefGoogle Scholar
  41. Zhan CG, Nichols JA, Dixon DA (2003) Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J Phys Chem A 107:4184–4195. CrossRefGoogle Scholar
  42. Zhang H, Feng S, Yan T et al (2016) Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drug. Int J Nanomed 11:4573–4582. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad de Ciencias QuímicasUniversidad VeracruzanaOrizabaMexico
  2. 2.Facultad de Ingeniería QuímicaBenemérita Universidad Autónoma de Puebla, Ciudad UniversitariaPueblaMexico
  3. 3.Programa Institucional de Fomento a la Investigación, Desarrollo e InnovaciónUniversidad Tecnológica MetropolitanaSan JoaquínChile

Personalised recommendations