Applied Nanoscience

, Volume 8, Issue 7, pp 1755–1765 | Cite as

High responsivity, self-powered carbon–zinc oxide hybrid thin film based photodetector

  • H. AhmadEmail author
  • T. Tamil
Original Article


A self-powered n-Si/C–ZnO/SiO2/p-Si heterojunction photodetector (PD) which comprises of carbon (C) and zinc oxide (ZnO) nanostructures on a n-type silicon (n-Si) substrate was prepared via vapor phase transport method. Excellent photodetection under 468 nm light illumination for powers ranging from 2.78 to 2910 µW delivered a quick response of about 9.5 µs. A high photoresponsivity of 2.082/AW and external quantum efficiency about 551% were obtained. The mechanism involved for the generation of a photocurrent at a zero bias voltage was discussed for future energy efficient optoelectronics devices. The morphology and composition of C, Zn and O were confirmed by field emission scanning electron microscope, energy dispersive X-ray and Raman scattering analysis. The formation of ZnO nanowires range from 10 to 100 nm, aided by the photoconduction mechanism. The Raman E2high mode of 437/cm of ZnO and the presence of D and G bands show the formation of a  hybrid C–ZnO thin film. The calculated rectifying ratio is found to shift as the direct current bias voltage and light power increased. The deposition of C particles on the ZnO surface creates point defects and sub-energy levels in the ZnO bandgap which favour fast responsivity in the PD.


Self-powered Photodetector Carbon Zinc oxide Responsivity 



Funding for this work was provided for by the Ministry of Higher Education, Malaysia under the Grants LRGS (2015) NGOD/UM/KPT and GA 010-2014 (ULUNG) as well as the University of Malaya under the Grants RU 001-2017.


  1. Ahmad H, Thandavan TMK, Ariannejad MM, Wu Yi C, Nor RM, Amiri IS (2017) Enhanced photoresponsivity from hybrid-ZnO nanowires with white LED 400–700-nm illumination. IEEE J Quantum Electron 53:1–6. CrossRefGoogle Scholar
  2. Bedia A, Bedia F, Benyoucef B, Hamzaoui S (2014) Electrical characteristics of ultraviolet photodetector based on ZnO nanostructures. Phys Procedia 55:53–60CrossRefGoogle Scholar
  3. Brown DM et al (1993) Silicon carbide UV photodiodes. IEEE Trans Electron Devices 40:325–333CrossRefGoogle Scholar
  4. Brownson DA, Banks CE (2010) Graphene electrochemistry: an overview of potential applications. Analyst 135:2768–2778CrossRefGoogle Scholar
  5. Caria M, Barberini L, Cadeddu S, Giannattasio A, Lai A, Rusani A, Sesselego A (2001) Far UV responsivity of commercial silicon photodetectors. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 466:115–118CrossRefGoogle Scholar
  6. Castiglioni C, Negri F, Rigolio M, Zerbi G (2001) Raman activation in disordered graphites of the A 1′ symmetry forbidden k ≠ 0 phonon: the origin of the D line. J Chem Phys 115:3769–3778CrossRefGoogle Scholar
  7. Chen H-Y et al (2014) Realization of a self-powered ZnO MSM UV photodetector with high responsivity using an asymmetric pair of Au electrodes. J Mater Chem C 2:9689–9694CrossRefGoogle Scholar
  8. Chen H, Yu P, Zhang Z, Teng F, Zheng L, Hu K, Fang X (2016) Ultrasensitive self-powered solar-blind deep-ultraviolet photodetector based on all-solid-state polyaniline/MgZnO bilayer. Small 12:5809–5816CrossRefGoogle Scholar
  9. Chen D et al (2018) Ag2S/ZnO core-shell nanoheterojunction for a self-powered solid-state photodetector with wide spectral response. J Alloy Compd 735:2491–2496CrossRefGoogle Scholar
  10. Cheng J, Zhang Y, Guo R (2008) ZnO microtube ultraviolet detectors. J Cryst Growth 310:57–61CrossRefGoogle Scholar
  11. Chrissanthopoulos A, Baskoutas S, Bouropoulos N, Dracopoulos V, Poulopoulos P, Yannopoulos S (2011) Synthesis and characterization of ZnO/NiO p–n heterojunctions: ZnO nanorods grown on NiO thin film by thermal evaporation. Photon Nanostruct Fundam Appl 9:132–139CrossRefGoogle Scholar
  12. Edmond J, Kong H, Suvorov A, Waltz D, Carter C Jr (1997) 6H-silicon carbide light emitting diodes and UV photodiodes. Phys Stat Sol (A) 162:481–491CrossRefGoogle Scholar
  13. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57CrossRefGoogle Scholar
  14. Ferrari AC et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401CrossRefGoogle Scholar
  15. Garnier JRM, Parize R, Appert E, Chaix-Pluchery O, Kaminski-Cachopo A, Consonni V (2015) Physical properties of annealed ZnO nanowire/CuSCN heterojunctions for self-powered UV photodetectors. ACS Appl Mater Interfaces 7:5820–5829CrossRefGoogle Scholar
  16. Guo Y, Li Y, Zhang Q, Wang H (2017) Self-powered multifunctional UV and IR photodetector as an artificial electronic eye. J Mater Chem C 5:1436–1442CrossRefGoogle Scholar
  17. Huang D, Zhang M, Huang Q, Wang L, Tong K (2017) Mechanical property, oxidation and ablation resistance of C/C–ZrB2–ZrC–SiC composite fabricated by polymer infiltration and pyrolysis with preform of Cf/ZrB2. J Mater Sci Technol 33:481–486CrossRefGoogle Scholar
  18. Jagadish C, Pearton SJ (2011) Zinc oxide bulk, thin films and nanostructures: processing, properties, and applications. Elsevier, OxfordGoogle Scholar
  19. Jammula RK, Pittala S, Srinath S, Srikanth VV (2015) Strong interfacial polarization in ZnO decorated reduced-graphene oxide synthesized by molecular level mixing. Phys Chem Chem Phys 17:17237–17245CrossRefGoogle Scholar
  20. Jin Z et al (2016) Graphdiyne: ZnO nanocomposites for high-performance UV photodetectors. Adv Mater 28:3697–3702CrossRefGoogle Scholar
  21. Khorasaninejad M, Walia J, Saini S (2012) Enhanced first-order Raman scattering from arrays of vertical silicon nanowires. Nanotechnology 23:275706CrossRefGoogle Scholar
  22. Koppens F, Mueller T, Avouris P, Ferrari A, Vitiello M, Polini M (2014) Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol 9:780–793CrossRefGoogle Scholar
  23. Kumar S, Sharma C (2017) Synthesis, characterization and catalytic performance of ZnO–CeO2 nanoparticles in wet oxidation of wastewater containing chlorinated compounds. Appl Nanosci 7:567–575CrossRefGoogle Scholar
  24. Kumar B, Gong H, Vicknesh S, Chua S, Tripathy S (2006) Luminescence properties of ZnO layers grown on Si-on-insulator substrates. Appl Phys Lett 89:141901CrossRefGoogle Scholar
  25. Li G, Liu L, Wu G, Chen W, Qin S, Wang Y, Zhang T (2016) Self-powered UV–near infrared photodetector based on reduced graphene oxide/n-Si. Vert Heterojunction Small 12:5019–5026CrossRefGoogle Scholar
  26. Liou Y-J, Huang W-J (2014) High temperature phase transitions of graphene oxide paper from graphite oxide solution. J Mater Sci Technol 30:1088–1091CrossRefGoogle Scholar
  27. Liu F et al (2014) High-sensitivity photodetectors based on multilayer GaTe flakes. ACS Nano 8:752–760CrossRefGoogle Scholar
  28. Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A (2013) Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol 8:497–501CrossRefGoogle Scholar
  29. Low T, Rodin A, Carvalho A, Jiang Y, Wang H, Xia F, Neto AC (2014) Tunable optical properties of multilayer black phosphorus thin films. Phys Rev B 90:075434CrossRefGoogle Scholar
  30. Morales-Torres S, Pastrana-Martínez LM, Figueiredo JL, Faria JL, Silva AM (2013) Graphene oxide-P25 photocatalysts for degradation of diphenhydramine pharmaceutical and methyl orange dye. Appl Surf Sci 275:361–368CrossRefGoogle Scholar
  31. Mridha S, Basak D (2007) Ultraviolet and visible photoresponse properties of n-Zn O/p-Si heterojunction. J Appl Phys 101:083102CrossRefGoogle Scholar
  32. Ning Y, Zhang Z, Teng F, Fang X (2018) Novel transparent and self-powered UV photodetector based on crossed ZnO nanofiber array homojunction. Small 14:1703754CrossRefGoogle Scholar
  33. Niu G et al (2016) Photodetection in hybrid single-layer graphene/fully coherent germanium island nanostructures selectively grown on silicon nanotip patterns. ACS Appl Mater Interfaces 8:2017–2026CrossRefGoogle Scholar
  34. Nusir AI, Manasreh M (2015) Self-powered near-infrared photodetector based on asymmetrical Schottky interdigital contacts. IEEE Electron Device Lett 36:1172–1175CrossRefGoogle Scholar
  35. Osinsky A, Gangopadhyay S, Gaska R, Williams B, Khan MA, Kuksenkov D, Temkin H (1997) Low noise p-π-n GaN ultraviolet photodetectors. Appl Phys Lett 71:2334–2336CrossRefGoogle Scholar
  36. Osinsky A, Gangopadhyay S, Lim B, Anwar M, Khan MA, Kuksenkov D, Temkin H (1998) Schottky barrier photodetectors based on AlGaN. Appl Phys Lett 72:742–744CrossRefGoogle Scholar
  37. Ouyang B, Zhang K, Yang Y (2018) Photocurrent polarity controlled by light wavelength in self-powered ZnO nanowires/SnS. Photodetect Syst Sci 1:16–23Google Scholar
  38. Radisavljevic B, Radenovic A, Brivio J, Giacometti iV, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150CrossRefGoogle Scholar
  39. Rajalakshmi M, Arora AK, Bendre B, Mahamuni S (2000) Optical phonon confinement in zinc oxide nanoparticles. J Appl Phys 87:2445–2448CrossRefGoogle Scholar
  40. Sahatiya P, Badhulika S (2015) One-step in situ synthesis of single aligned graphene–ZnO nanofiber for UV sensing. RSC Adv 5:82481–82487CrossRefGoogle Scholar
  41. Sahatiya P, Badhulika S (2016) UV/ozone assisted local graphene (p)/ZnO (n) heterojunctions as a nanodiode rectifier. J Phys D Appl Phys 49:265101CrossRefGoogle Scholar
  42. Sahatiya P, Jones SS, Gomathi PT, Badhulika S (2017) Flexible substrate based 2D ZnO (n)/graphene (p) rectifying junction as enhanced broadband photodetector using strain modulation 2D. Materials 4:025053Google Scholar
  43. Sahatiya P, Shinde A, Badhulika S (2018) Pyro-phototronic nanogenerator based on flexible 2D ZnO/graphene heterojunction and its application in self-powered near infrared photodetector and active analog frequency modulation. Nanotechnology 29:325205CrossRefGoogle Scholar
  44. Saw KG, Tneh SS, Yam FK, Ng SS, Hassan Z (2014) Determination of acceptor concentration, depletion width, donor level movement and sensitivity factor of ZnO on diamond heterojunction under UV illumination. PLoS One 9:e89348CrossRefGoogle Scholar
  45. Scott J (1970) UV resonant Raman scattering in ZnO. Phys Rev B 2:1209CrossRefGoogle Scholar
  46. Teng FB, Zheng L, Hu K, Chen H, Li Y, Zhang Z, Fang X (2016) A surface oxide thin layer of copper nanowires enhanced the UV selective response of a ZnO film photodetector. J Mater Chem C 4:8416–8421CrossRefGoogle Scholar
  47. Teng FA, Ouyang W, Li Y, Zheng L, Fang X (2017) Novel structure for high performance UV photodetector based on BiOCl/ZnO. Hybrid Film small 13:1700156Google Scholar
  48. Thandavan TMK, Gani SMA, Wong CS, Nor RM (2014a) Synthesis of ZnO nanowires via hotwire thermal evaporation of brass (CuZn) assisted by vapor phase transport of methanol. J Nanomater 2014:1–10. CrossRefGoogle Scholar
  49. Thandavan TMK, Wong CS, Gani SMA, Nor RM (2014b) Photoluminescence properties of un-doped and Mn-doped ZnO nanostructures. Mater Express 4:475–482CrossRefGoogle Scholar
  50. Tseng L et al (2014) Green emission in carbon doped ZnO films. AIP Adv 4:067117CrossRefGoogle Scholar
  51. Tyagi M, Tomar M, Gupta V (2014) Fabrication of an efficient GLAD-assisted p-NiO nanorod/n-ZnO thin film heterojunction UV photodiode. J Mater Chem C 2:2387–2393CrossRefGoogle Scholar
  52. Van Schalkwyk L, Meyer W, Auret FD, Nel JM, Ngoepe PNM, Diale M (2012) Characterization of AlGaN-based metal–semiconductor solar-blind UV photodiodes with IrO2 Schottky contacts. Phys B Condens Matter 407:1529–1532CrossRefGoogle Scholar
  53. Wagner P, Helbig R (1974) Halleffekt und anisotropie der beweglichkeit der elektronen in ZnO. J Phys Chem Solids 35:327–335CrossRefGoogle Scholar
  54. Wang ZL (2004) Nanostructures of zinc oxide. Mater Today 7:26–33CrossRefGoogle Scholar
  55. Wang H, Yi G, Zu X, Jiang X, Zhang Z, Luo H (2015) A highly sensitive and self-powered ultraviolet photodetector composed of titanium dioxide nanorods and polyaniline nanowires. Mater Lett 138:204–207CrossRefGoogle Scholar
  56. Xie X et al (2012) Visible–NIR photodetectors based on CdTe nanoribbons. Nanoscale 4:2914–2919CrossRefGoogle Scholar
  57. Xu J, Yang W, Chen H, Zheng L, Hu M, Li Y, Fang X (2018) Efficiency enhancement of TiO2 self-powered UV photodetectors using a transparent Ag nanowire electrode. J Mater Chem C 6:3334–3340CrossRefGoogle Scholar
  58. Yadav HK, Sreenivas K, Gupta V (2007) Enhanced response from metal/ZnO bilayer ultraviolet photodetector. Appl Phys Lett 90:172113CrossRefGoogle Scholar
  59. Yakuphanoglu F, Caglar Y, Caglar M, Ilican S (2010) ZnO/p-Si heterojunction photodiode by sol–gel deposition of nanostructure n-ZnO film on p-Si substrate. Mater Sci Semicond Process 13:137–140CrossRefGoogle Scholar
  60. Yang S, Gong J, Deng Y (2012) A sandwich-structured ultraviolet photodetector driven only by opposite heterojunctions. J Mater Chem 22:13899–13902CrossRefGoogle Scholar
  61. Ye J, Tripathy S, Ren F-F, Sun X, Lo G, Teo K (2009) Raman-active Fröhlich optical phonon mode in arsenic implanted ZnO. Appl Phys Lett 94:011913CrossRefGoogle Scholar
  62. Yu P, Hu K, Chen H, Zheng L, Fang X (2017) Novel p–p heterojunctions self-powered broadband photodetectors with ultrafast speed and high responsivity. Adv Func Mater 27:1703166CrossRefGoogle Scholar
  63. Zeng H, Duan G, Li Y, Yang S, Xu X, Cai W (2010) Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Adv Func Mater 20:561–572CrossRefGoogle Scholar
  64. Zhai T et al (2010a) Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors. Acs Nano 4:1596–1602CrossRefGoogle Scholar
  65. Zhai T, Li L, Wang X, Fang X, Bando Y, Golberg D (2010b) Recent developments in one-dimensional inorganic nanostructures for photodetectors. Adv Func Mater 20:4233–4248CrossRefGoogle Scholar
  66. Zhang D, Liu C, Li K, Chen Y, Ruan S, Zhang X, Li C (2018) Facilitated extrinsic majority carrier depletion and photogenerated exciton dissociation in an annealing-free ZnO: C photodetector. Nanoscale 10:6459–6466CrossRefGoogle Scholar
  67. Zhao B, Wang F, Chen H, Zheng L, Su L, Zhao D, Fang X (2017) An ultrahigh responsivity (9.7 mA W−1) self-powered solar-blind photodetector based on individual ZnO–Ga2O3. Heterostruct Adv Funct Mater 27:1700264CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Photonics Research Centre, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Physics, Faculty of Science and TechnologyAirlangga UniversitySurabayaIndonesia

Personalised recommendations