The peculiarities of light absorption and light emission in Cu-doped Y-stabilized ZrO2 nanopowders

  • N. Korsunska
  • M. Baran
  • V. Papusha
  • S. Lavoryk
  • O. Marchylo
  • K. Michailovska
  • L. Melnichuk
  • O. Melnichuk
  • L. Khomenkova
Original Article


The influence of doping with copper and annealing temperature on the characteristics of yttrium-stabilized ZrO2 nanopowders was investigated using photo- and cathodoluminescence as well as diffuse reflectance and electron paramagnetic resonance methods. After annealing at temperatures below 800 °С, both Cu-doped and Cu-free powders demonstrate light emission in the blue–red spectral range that are characteristic of the tetragonal ZrO2 phase. In the excitation spectra of blue–orange photoluminescence it was found a maximum in the range of light absorption by oxygen vacancies, indicating that the corresponding emitting centers are vacancy related complexes. A red luminescence band was found to be excited only by the light from band-to-band ZrO2 absorption. It was observed that the increase of annealing temperature up to 1000 °C stimulates the appearance of additional luminescence bands at ~ 510 and 580 nm correlated with the formation of monoclinic ZrO2 phase. The corresponding emitting center is considered to be a substitutional copper ion, the excitation of which can occur both via the capture of free carriers and via the energy transfer from oxygen vacancies.


Zirconium oxide Yttrium Copper Doping Luminescence Absorption Oxygen vacancy 



This work was partly supported by the National Academy of Sciences of Ukraine (project III-4-16 and project III-41-17), by Ministry of Education and Science of Ukraine (Grant ID: 89452). The authors would like to thank also Dr. O. Gorban from O. O. Galkin Donetsk Institute for Physics and Engineering (NAS Ukraine) for the preparation of Cu-doped powders.


  1. Alivov YI, Chukichev MV, Nikitenko VA (2004) Green luminescence band of zinc oxide films copper-doped by thermal diffusion. Semiconductors 38:31–35. CrossRefGoogle Scholar
  2. Bansal P, Chaudhary GR, Mehta SK (2015) Comparative study of catalytic activity of ZrO2 nanoparticles and photocatalytic degradation of cationic and anionic dyes. Chem Eng 280:475–485. CrossRefGoogle Scholar
  3. Bhagwat M, Ramaswamy AV, Tyagi AK, Veda R (2003) Rietveld refinement study of nanocrystalline copper doped zirconia. Mater Res Bull 38:1713–1724. CrossRefGoogle Scholar
  4. Fidelus JD, Lojkowski W, Millers D, Grigorjeva L, Smits K, Piticesku RR (2007) Zirconia based nanomaterials for oxygen sensors—generation, characterization and optical properties. Solid State Phenom 128:141–150. CrossRefGoogle Scholar
  5. Grigorjeva L, Millers D, Kalinko A, Pankratov V, Smits K (2009) Time-resolved cathodoluminescence and photoluminescence of nanoscale oxides. J Eur Ceram Soc 29:255–259. CrossRefGoogle Scholar
  6. Habibi MH, Wang L, Liang J, Guo SM (2013) An investigation on hot corrosion behavior of YSZ–Ta2O5 in Na2SO4 + V2O5 salt at 1100 °C. Corros Sci 75:409–414. CrossRefGoogle Scholar
  7. Jacob KH, Knozinger E, Benfer S (1994) Chemisorption of H2 and H2–O2 on polymorphic zirconia. J Chem Soc Faraday Trans 90:2969–2975. CrossRefGoogle Scholar
  8. Jia R, Yang W, Bai Y, Li T (2006) Upconversion photoluminescence of ZrO2:Er3+ nanocrystals synthesized by using butadinol as high boiling point solvent. Opt Mater 28:246–249. CrossRefGoogle Scholar
  9. Kirm M, Aarik J, Sildos I (2005) Thin films of HfO2 and ZrO2 as potential scintillators. Nucl Instrum Methods Phys Res A 537:251–255. CrossRefGoogle Scholar
  10. Korsunska N, Papusha V, Kolomys O, Strelchuk V, Kuchuk A, Kladko V, Bacherikov Y, Konstantinova T, Khomenkova L (2014a) Nanostructured Y-doped ZrO2 powder: peculiarities of light emission under electron beam excitation. Phys Stat Sol C 11:1417–1422. Google Scholar
  11. Korsunska N, Baran M, Zhuk A, Polishchuk Y, Stara T, Kladko V, Bacherikov Y, Ye V, Konstantinova T, Khomenkova L (2014b) Role of paramagnetic defects in light emission processes in Y-doped ZrO2 nanopowder. Mater Res Express 1:045011. CrossRefGoogle Scholar
  12. Korsunska N, Zhuk A, Pupasha V, Kolomys O, Yu P, Yu B, Strelchuk V, Kladko V, Konstantinova T, Kryshtab T, Khomenkova L (2015a) Structural and optical characterization of ZrO2 and Y2O3–ZrO2 nanopowders. In: Pérez CR, Contreras Cuevas A. Esparza Muñoz R (eds) Materials characterization. Springer, Cham, pp 59–67. Google Scholar
  13. Korsunska N, Stara T, Khomenkova L, Poslishchuk Y, Kladko V, Michailovska K, Kharchenko M, Gorban O (2015b) Effect of Cu- and Y-codoping on structural and luminescent properties of zirconia based nanopowders. ECS Trans 66:313–319. CrossRefGoogle Scholar
  14. Korsunska N, Baran M, Vorona I, Nosenko V, Lavoryk S, Polishchuk Y, Kladko V, Portier X, Khomenkova L (2017a) Effect of cooling rate on dopant spatial localization and phase transformation in Cu-doped Y-stabilized ZrO2 nanopowders. Phys Stat Sol C 14:1700183. Google Scholar
  15. Korsunska N, Baran M, Vorona I, Nosenko V, Lavoryk S, Portier X, Khomenkova L (2017b) Impurity-governed modification of optical and structural properties of ZrO2-based composites doped with Cu and Y. Nanoscale Res Lett 12:157. CrossRefGoogle Scholar
  16. Lin C, Zhang C, Lin J (2007) Phase transformation and photoluminescence properties of nanocrystalline ZrO2 powders prepared via the Pechini-type sol–gel process. J Phys Chem C 111:3300–3307. CrossRefGoogle Scholar
  17. Nakajima H, Mori T (2006) Photoluminescence excitation bands corresponding to defect states due to oxygen vacancies in yttria-stabilized zirconia. J Alloys Compd 408–412:728–731. CrossRefGoogle Scholar
  18. Orera VM, Merino RI, Chen Y, Cases R, Alonso PJ (1990) Intrinsic electron and hole defects in stabilized zirconia single crystals. Phys Rev B 42:9782–9789. CrossRefGoogle Scholar
  19. Padture NP, Gell M, Jordan EH (2002) Thermal barrier coatings for gas-turbine engine applications. Science 296:280–284. CrossRefGoogle Scholar
  20. Pakharukova VP, Moroz EM, Zyuzin DA, Ishchenko AV, Dolgikh LY, Strizhak PE (2015) Structure of copper oxide species supported on monoclinic zirconia. J Phys Chem C 119:28828–28835. CrossRefGoogle Scholar
  21. Petrik NG, Tailor DP, Orlando TM (1999) Laser-stimulated luminescence of yttria-stabilized cubic zirconia crystals. J Appl Phys 85:6770–6776. CrossRefGoogle Scholar
  22. Robertson J (2004) High dielectric constant oxides. Eur Phys J Appl Phys 28:265–291. CrossRefGoogle Scholar
  23. Samson K, Śliwa M, Socha RP, Góra-Marek K, Mucha D, Rutkowska-Zbik D, Paul JF, Ruggiero-Mikołajczyk M, Grabowski R, Słoczyński J (2014) Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2. ACS Catal 4:3730–3741. CrossRefGoogle Scholar
  24. Sherif AS, Hachtmann JE (1980) Stable copper zirconium complex salt solution for enhancing the resistance to rot of cotton fabrics. Patent US 4200672Google Scholar
  25. Smits K, Grigorjeva L, Millers D, Sarakovskis A, Grabis J, Lojkowski W (2011) Intrinsic defect related luminescence in ZrO2. J Lumin 131:2058–2062. CrossRefGoogle Scholar
  26. Sun Y, Sermon PA (1994) Evidence of a metal-support in sol–gel derived Cu–ZrO2 catalysts for CO hydrogenation. Catal Lett 29:361–369. CrossRefGoogle Scholar
  27. Winnubst L, Ran S, Speets EA, Blank DHA (2009) Analysis of reactions during sintering of CuO-doped 3Y-TZP nano-powder composites. J Eur Ceram Soc 29:2549–2557. CrossRefGoogle Scholar
  28. Wright S, Barklie RC (2006) EPR characterization of defects in monoclinic powders of ZrO2 and HfO2. Mater Sci Semicond Process 9:892–896. CrossRefGoogle Scholar
  29. Zhang Y, Hu L, Li HK, Chen J (2008a) Densification and phase transformation during pressureless sintering of nanocrystalline ZrO2–Y2O3–CuO ternary system. J Am Ceram Soc 91:1332–1334. CrossRefGoogle Scholar
  30. Zhang YS, Hu LT, Zhang H, Chen JM, Liu WM (2008b) Microstructural characterization and crystallization of ZrO2–Y2O3–CuO solid solution powders. J Mater Process Technol 198:191–194. CrossRefGoogle Scholar
  31. Zhang Y, Chen C, Lin X, Li D, Chen X, Zhan Y, Zheng Q (2014) CuO/ZrO2 catalysts for water–gas shift reaction: nature of catalytically active copper species. Int J Hydrog Energy 39:3746–3754. CrossRefGoogle Scholar
  32. Zhao Q, Wang X, Cai T (2004) The study of surface properties of ZrO2. Appl Surf Sci 225:7–13. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.V. Lashkaryov Institute of Semiconductor Physics of the National Academy of Sciences of UkraineKievUkraine
  2. 2.NanoMedTech LLCKievUkraine
  3. 3.Mykola Gogol State University of NizhynNizhynUkraine
  4. 4.National University of “Kyiv-Mohyla Academy”KievUkraine

Personalised recommendations