Applied Nanoscience

, Volume 8, Issue 6, pp 1515–1522 | Cite as

The critical role of metal oxide electron transport layer for perovskite solar cell

  • S. Amber Yousaf
  • M. Imran
  • M. Ikram
  • S. Ali
Original Article


Recent developments in perovskite solar cells have achieved efficiency around 22%. However, degradation of perovskite material on contact with moisture is still an issue. In this study, inverted planar perovskite solar cells via solution processing at low temperature are prepared with different electron transport layers. The zinc oxide and aluminum doped zinc oxide are used as electron selective layer between PCBM and back contact. The metal oxides act as protective layer resulting in increased stability against moisture. Furthermore, this interlayer improves charge transfer and collection, leading to significantly increased short circuit current density and fill factor. The champion cell with power conversion efficiency 12.01% is obtained for doped zinc oxide interlayer obtained under 1-sun condition.


Perovskite Active layer Polymer ETL Power conversion efficiency Fill factor 



The authors acknowledge financial support from higher education commission (HEC), Pakistan through the Pak-US joint project.

Compliance with ethical standards

Conflict of interest

The authors confirm that this manuscript has no conflict of interest.


  1. A Y, M B, X B, et al (2016) Investigation of Optical and Dielectric Constants of Organic-Inorganic CH3NH3PbI3 Perovskite Thin Films. J Nanomed Nanotechnol 7:5–9. Google Scholar
  2. Bai Y, Yu H, Zhu Z et al (2015) High performance inverted structure perovskite solar cells based on a PCBM:polystyrene blend electron transport layer. J Mater Chem A 3:9098–9102. CrossRefGoogle Scholar
  3. Bai Y, Dong Q, Shao Y et al (2016) Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nat Commun 7:12806. CrossRefGoogle Scholar
  4. Bi D, Moon S-J, Häggman L et al (2013) Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Adv 3:18762. CrossRefGoogle Scholar
  5. Chang S, Han GD, Weis JG et al (2016) Transition metal-oxide free perovskite solar cells enabled by a new organic charge transport layer. ACS Appl Mater Interfaces 8:8511–8519. CrossRefGoogle Scholar
  6. Chen L-C, Chen J-C, Chen C-C, Wu C-G (2015a) Fabrication and properties of high-efficiency perovskite/PCBM organic solar cells. Nanoscale Res Lett 10:312. CrossRefGoogle Scholar
  7. Chen W, Wu Y, Liu J et al (2015b) Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells. Energy Environ Sci 8:629–640. CrossRefGoogle Scholar
  8. Chiang C-H, Wu C-G (2016) Bulk heterojunction perovskite–PCBM solar cells with high fill factor. Nat Photonics 10:196–200. CrossRefGoogle Scholar
  9. Green MA, Hishikawa Y, Dunlop ED et al (2018) Solar cell efficiency tables (version 51). Prog Photovoltaics Res Appl 26:3–12. CrossRefGoogle Scholar
  10. Heo JH, Han HJ, Kim D et al (2015) Hysteresis-less inverted CH3 NH3 PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ Sci 8:1602–1608. CrossRefGoogle Scholar
  11. Jeng JY, Chiang YF, Lee MH et al (2013) CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv Mater 25:3727–3732. CrossRefGoogle Scholar
  12. Jeng JY, Chen KC, Chiang TY et al (2014) Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv Mater 26:4107–4113. CrossRefGoogle Scholar
  13. Jiang Q, Chu Z, Wang P et al (2017) Planar-structure perovskite solar cells with efficiency beyond 21%. Adv Mater 1703852:1–7. Google Scholar
  14. Kim H-B, Choi H, Jeong J et al (2014) Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale 6:6679. CrossRefGoogle Scholar
  15. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051. CrossRefGoogle Scholar
  16. Lai W, Lin K, Guo T et al (2015) Conversion efficiency improvement of inverted CH3NH3PbI3 perovskite solar cells with room temperature sputtered ZnO by adding the C60 interlayer Conversion efficiency improvement of inverted CH3 NH3 PbI3 perovskite solar cells with room temperature spu. 253301:1–6.
  17. Lee MM, Teuscher J, Miyasaka T et al (2012a) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647. CrossRefGoogle Scholar
  18. Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H (2012b) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–648. CrossRefGoogle Scholar
  19. Mahmood K, Sarwar S, Mehran MT (2017) Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Adv 7:17044–17062. CrossRefGoogle Scholar
  20. Pang S, Hu H, Zhang J et al (2014) NH2CH = NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem Mater 26:1485–1491. CrossRefGoogle Scholar
  21. Qin P, Tanaka S, Ito S et al (2014) Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat Commun 5:1–6. Google Scholar
  22. Qiu W, Buffière M, Brammertz G et al (2015) High efficiency perovskite solar cells using a PCBM/ZnO double electron transport layer and a short air-aging step. Org Electron physics Mater Appl 26:30–35. Google Scholar
  23. Savva A, Burgués-Ceballos I, Choulis SA (2016) Improved performance and reliability of p-i-n perovskite solar cells via doped metal oxides. Adv Energy Mater 6:1–8. CrossRefGoogle Scholar
  24. Ugur E, Sheikh AD, Munir R et al (2017) Improved morphology and efficiency of n–i–p planar perovskite solar cells by processing with glycol ether additives. ACS Energy Lett. Google Scholar
  25. Wang D, Wright M, Elumalai NK, Uddin A (2016) Stability of perovskite solar cells. Sol Energy Mater Sol Cells 147:255–275. CrossRefGoogle Scholar
  26. Wu Z, Bai S, Xiang J et al (2014) Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale 6:10505–10510. CrossRefGoogle Scholar
  27. Wu R, Yang J, Xiong J et al (2015) Efficient electron-blocking layer-free planar heterojunction perovskite solar cells with a high open-circuit voltage. Org Electron physics Mater Appl 26:265–272. Google Scholar
  28. Xing G, Mathews N, Sun S et al (2013) Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342:344–347. CrossRefGoogle Scholar
  29. Yan X, Yang X, Wang R et al (2017) Effect on the morphology and optical properties of CH3NH3PbI3 with additive of NH4Cl. Opt Mater (Amst) 64:461–467. CrossRefGoogle Scholar
  30. Yang S, Fu W, Zhang Z et al (2017) Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. J Mater Chem A 5:11462–11482. CrossRefGoogle Scholar
  31. Yin X, Yao Z, Luo Q et al (2017) High efficiency inverted planar perovskite solar cells with solution-processed NiOx hole contact. ACS Appl Mater Interfaces 9:2439–2448. CrossRefGoogle Scholar
  32. You J, Meng L, Song T-B et al (2015) Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotechnol 11:75–81. CrossRefGoogle Scholar
  33. Zhou Z, Li X, Cai M et al (2017) Stable inverted planar perovskite solar cells with low-temperature-processed hole-transport bilayer. Adv Energy Mater. Google Scholar
  34. Zhu Z, Bai Y, Zhang T et al (2014) High-performance hole-extraction layer of sol-gel-processed nio nanocrystals for inverted planar perovskite solar cells. Angew Chemie Int Ed 53:12571–12575. Google Scholar
  35. Zuo C, Ding L (2017) Modified PEDOT Layer Makes a 1.52 V Voc for Perovskite/PCBM Solar Cells. Adv Energy Mater 7:4–9. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Solar Cell Applications Research Lab, Department of PhysicsGovernment College UniversityLahorePakistan
  2. 2.Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS)Riphah International UniversityLahorePakistan

Personalised recommendations