Advertisement

Applied Nanoscience

, Volume 8, Issue 6, pp 1515–1522 | Cite as

The critical role of metal oxide electron transport layer for perovskite solar cell

  • S. Amber Yousaf
  • M. Imran
  • M. Ikram
  • S. Ali
Original Article
  • 33 Downloads

Abstract

Recent developments in perovskite solar cells have achieved efficiency around 22%. However, degradation of perovskite material on contact with moisture is still an issue. In this study, inverted planar perovskite solar cells via solution processing at low temperature are prepared with different electron transport layers. The zinc oxide and aluminum doped zinc oxide are used as electron selective layer between PCBM and back contact. The metal oxides act as protective layer resulting in increased stability against moisture. Furthermore, this interlayer improves charge transfer and collection, leading to significantly increased short circuit current density and fill factor. The champion cell with power conversion efficiency 12.01% is obtained for doped zinc oxide interlayer obtained under 1-sun condition.

Keywords

Perovskite Active layer Polymer ETL Power conversion efficiency Fill factor 

Notes

Acknowledgements

The authors acknowledge financial support from higher education commission (HEC), Pakistan through the Pak-US joint project.

Compliance with ethical standards

Conflict of interest

The authors confirm that this manuscript has no conflict of interest.

References

  1. A Y, M B, X B, et al (2016) Investigation of Optical and Dielectric Constants of Organic-Inorganic CH3NH3PbI3 Perovskite Thin Films. J Nanomed Nanotechnol 7:5–9.  https://doi.org/10.4172/2157-7439.1000407 Google Scholar
  2. Bai Y, Yu H, Zhu Z et al (2015) High performance inverted structure perovskite solar cells based on a PCBM:polystyrene blend electron transport layer. J Mater Chem A 3:9098–9102.  https://doi.org/10.1039/C4TA05309E CrossRefGoogle Scholar
  3. Bai Y, Dong Q, Shao Y et al (2016) Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nat Commun 7:12806.  https://doi.org/10.1038/ncomms12806 CrossRefGoogle Scholar
  4. Bi D, Moon S-J, Häggman L et al (2013) Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Adv 3:18762.  https://doi.org/10.1039/c3ra43228a CrossRefGoogle Scholar
  5. Chang S, Han GD, Weis JG et al (2016) Transition metal-oxide free perovskite solar cells enabled by a new organic charge transport layer. ACS Appl Mater Interfaces 8:8511–8519.  https://doi.org/10.1021/acsami.6b00635 CrossRefGoogle Scholar
  6. Chen L-C, Chen J-C, Chen C-C, Wu C-G (2015a) Fabrication and properties of high-efficiency perovskite/PCBM organic solar cells. Nanoscale Res Lett 10:312.  https://doi.org/10.1186/s11671-015-1020-2 CrossRefGoogle Scholar
  7. Chen W, Wu Y, Liu J et al (2015b) Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells. Energy Environ Sci 8:629–640.  https://doi.org/10.1039/C4EE02833C CrossRefGoogle Scholar
  8. Chiang C-H, Wu C-G (2016) Bulk heterojunction perovskite–PCBM solar cells with high fill factor. Nat Photonics 10:196–200.  https://doi.org/10.1038/nphoton.2016.3 CrossRefGoogle Scholar
  9. Green MA, Hishikawa Y, Dunlop ED et al (2018) Solar cell efficiency tables (version 51). Prog Photovoltaics Res Appl 26:3–12.  https://doi.org/10.1002/pip.2978 CrossRefGoogle Scholar
  10. Heo JH, Han HJ, Kim D et al (2015) Hysteresis-less inverted CH3 NH3 PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ Sci 8:1602–1608.  https://doi.org/10.1039/C5EE00120J CrossRefGoogle Scholar
  11. Jeng JY, Chiang YF, Lee MH et al (2013) CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv Mater 25:3727–3732.  https://doi.org/10.1002/adma.201301327 CrossRefGoogle Scholar
  12. Jeng JY, Chen KC, Chiang TY et al (2014) Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv Mater 26:4107–4113.  https://doi.org/10.1002/adma.201306217 CrossRefGoogle Scholar
  13. Jiang Q, Chu Z, Wang P et al (2017) Planar-structure perovskite solar cells with efficiency beyond 21%. Adv Mater 1703852:1–7.  https://doi.org/10.1002/adma.201703852 Google Scholar
  14. Kim H-B, Choi H, Jeong J et al (2014) Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale 6:6679.  https://doi.org/10.1039/c4nr00130c CrossRefGoogle Scholar
  15. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051.  https://doi.org/10.1021/ja809598r CrossRefGoogle Scholar
  16. Lai W, Lin K, Guo T et al (2015) Conversion efficiency improvement of inverted CH3NH3PbI3 perovskite solar cells with room temperature sputtered ZnO by adding the C60 interlayer Conversion efficiency improvement of inverted CH3 NH3 PbI3 perovskite solar cells with room temperature spu. 253301:1–6.  https://doi.org/10.1063/1.4938570
  17. Lee MM, Teuscher J, Miyasaka T et al (2012a) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–647.  https://doi.org/10.1126/science.1228604 CrossRefGoogle Scholar
  18. Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H (2012b) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–648.  https://doi.org/10.1126/science.1228604 CrossRefGoogle Scholar
  19. Mahmood K, Sarwar S, Mehran MT (2017) Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Adv 7:17044–17062.  https://doi.org/10.1039/C7RA00002B CrossRefGoogle Scholar
  20. Pang S, Hu H, Zhang J et al (2014) NH2CH = NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem Mater 26:1485–1491.  https://doi.org/10.1021/cm404006p CrossRefGoogle Scholar
  21. Qin P, Tanaka S, Ito S et al (2014) Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat Commun 5:1–6.  https://doi.org/10.1038/ncomms4834 Google Scholar
  22. Qiu W, Buffière M, Brammertz G et al (2015) High efficiency perovskite solar cells using a PCBM/ZnO double electron transport layer and a short air-aging step. Org Electron physics Mater Appl 26:30–35.  https://doi.org/10.1016/j.orgel.2015.06.046 Google Scholar
  23. Savva A, Burgués-Ceballos I, Choulis SA (2016) Improved performance and reliability of p-i-n perovskite solar cells via doped metal oxides. Adv Energy Mater 6:1–8.  https://doi.org/10.1002/aenm.201600285 CrossRefGoogle Scholar
  24. Ugur E, Sheikh AD, Munir R et al (2017) Improved morphology and efficiency of n–i–p planar perovskite solar cells by processing with glycol ether additives. ACS Energy Lett.  https://doi.org/10.1021/acsenergylett.7b00526 Google Scholar
  25. Wang D, Wright M, Elumalai NK, Uddin A (2016) Stability of perovskite solar cells. Sol Energy Mater Sol Cells 147:255–275.  https://doi.org/10.1016/j.solmat.2015.12.025 CrossRefGoogle Scholar
  26. Wu Z, Bai S, Xiang J et al (2014) Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale 6:10505–10510.  https://doi.org/10.1039/C4NR03181D CrossRefGoogle Scholar
  27. Wu R, Yang J, Xiong J et al (2015) Efficient electron-blocking layer-free planar heterojunction perovskite solar cells with a high open-circuit voltage. Org Electron physics Mater Appl 26:265–272.  https://doi.org/10.1016/j.orgel.2015.07.057 Google Scholar
  28. Xing G, Mathews N, Sun S et al (2013) Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342:344–347.  https://doi.org/10.1126/science.1243167 CrossRefGoogle Scholar
  29. Yan X, Yang X, Wang R et al (2017) Effect on the morphology and optical properties of CH3NH3PbI3 with additive of NH4Cl. Opt Mater (Amst) 64:461–467.  https://doi.org/10.1016/j.optmat.2017.01.019 CrossRefGoogle Scholar
  30. Yang S, Fu W, Zhang Z et al (2017) Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. J Mater Chem A 5:11462–11482.  https://doi.org/10.1039/C7TA00366H CrossRefGoogle Scholar
  31. Yin X, Yao Z, Luo Q et al (2017) High efficiency inverted planar perovskite solar cells with solution-processed NiOx hole contact. ACS Appl Mater Interfaces 9:2439–2448.  https://doi.org/10.1021/acsami.6b13372 CrossRefGoogle Scholar
  32. You J, Meng L, Song T-B et al (2015) Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotechnol 11:75–81.  https://doi.org/10.1038/nnano.2015.230 CrossRefGoogle Scholar
  33. Zhou Z, Li X, Cai M et al (2017) Stable inverted planar perovskite solar cells with low-temperature-processed hole-transport bilayer. Adv Energy Mater.  https://doi.org/10.1002/aenm.201700763 Google Scholar
  34. Zhu Z, Bai Y, Zhang T et al (2014) High-performance hole-extraction layer of sol-gel-processed nio nanocrystals for inverted planar perovskite solar cells. Angew Chemie Int Ed 53:12571–12575.  https://doi.org/10.1002/anie.201405176 Google Scholar
  35. Zuo C, Ding L (2017) Modified PEDOT Layer Makes a 1.52 V Voc for Perovskite/PCBM Solar Cells. Adv Energy Mater 7:4–9.  https://doi.org/10.1002/aenm.201601193 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Solar Cell Applications Research Lab, Department of PhysicsGovernment College UniversityLahorePakistan
  2. 2.Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS)Riphah International UniversityLahorePakistan

Personalised recommendations