Advertisement

Applied Nanoscience

, Volume 8, Issue 6, pp 1389–1397 | Cite as

Incorporation of indium in TiO2-based photoanodes for enhancing the photovoltaic conversion efficiency of dye-sensitized solar cells

  • R. Jeba Beula
  • Suganthi Devadason
  • B. Vidhya
Original Article
  • 11 Downloads

Abstract

Sol–gel-assisted spin-coating method was used to prepare TiO2 photoelectrodes doped with four different concentrations of indium 0.025, 0.05, 0.075 and 0.1 M. The crystalline phase and average crystallite size of the pure- and indium-doped TiO2 films were found using X-ray diffractometer. Raman analysis was performed for the pure- and In-doped TiO2 films to confirm the structure of anatase phase. UV–visible and photoluminescence spectrophotometer were used to analyze the optical properties of the films. A shift towards a lower wavelength in the absorption spectrum and widening of band gap were noted for the doped TiO2 films. Reduction in the peak intensity was observed in the PL spectra to indicate the inhibiting action of electron–hole recombination. A maximum (2.71%) light to current efficiency is noted for the dye-sensitized solar cells (DSSC) fabricated based on 0.025M In-doped TiO2 electrode.

Keywords

TiO2 Sol–gel Spin coating DSSC Indium-doped TiO2 

Notes

References

  1. Atanacio AJ, Nowotny J, Prince KE (2012) Effect of oxygen activity on surface composition of In-doped TiO2 at elevated temperatures. J Phys Chem C 116:19246–19251CrossRefGoogle Scholar
  2. Bakhshayesh AM, Bakhshayesh N (2016) Enhanced performance of dye-sensitized solar cells aided by Sr,Cr co-doped TiO2 xerogel films made of uniform spheres. Mater Sci Semicond Process 41:92–101CrossRefGoogle Scholar
  3. Bandna Bharti SK, Lee H-N, Kumar R (2016) Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical roperties by air plasma treatment. Sci Rep 6:32355CrossRefGoogle Scholar
  4. Bechstein R, Kitta M, Schütte J, Onishi H, Kühnle A (2009) The effects of antimony doping on the surface structure of rutile TiO2 (110). Nanotechnology 20:264003-1–264003-7Google Scholar
  5. Biswaji C, Munmun D, Amarjyoti C (2014) Shallow and deep trap emission and luminescence quenching of TiO2 nanoparticles on Cu doping. Appl Nanosci 4:499–506CrossRefGoogle Scholar
  6. Bo Y, Xueqin Z, Peng C, Lei Z, Xiao Y, Haijun Z, Guang L, Mingzai W, Yongqing M, Shaowei J, Xiaoshuang C (2015) Nanocomposite of tin sulfide nanoparticles with reduced graphene oxide in high-efficiency dye-sensitized solar cells. ACS Appl Mater Interfaces 7(1):137–143CrossRefGoogle Scholar
  7. Caglar M, Caglar Y, Ilican S (2007) Electrical and optical properties of undoped and In-doped ZnO thin film. Phys stat sol (c) 4:1337–1340CrossRefGoogle Scholar
  8. Chen Y, Zhou X, Zhao X, He X, Gu X (2008) Crystallite structure, surface morphology and optical properties of In2O3-TiO2 composite thin films by sol-gel method. Mater Sci Eng B 151:179–186CrossRefGoogle Scholar
  9. Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679CrossRefGoogle Scholar
  10. Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, LawrenceGoogle Scholar
  11. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C 4:145–153CrossRefGoogle Scholar
  12. Guo S, Wang L, Zhang C, Qi G, Gu B, Liu L, Yuan Z (2017) A unique semiconductor–carbon–metal hybrid structure design as a counter electrode in dye-sensitized solar cells. Nanoscale 9:6837–6845CrossRefGoogle Scholar
  13. Gupta K, Singh RP, Pandey A (2013) Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli. J Nanotechnol 4:345–351Google Scholar
  14. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663CrossRefGoogle Scholar
  15. Hamadanian M, Karimzadeh S, Jabbari V, Villagrán D (2016) Synthesis of cysteine, cobalt and copper-doped TiO2 nanophotocatalysts with excellent visible-light-induced photocatalytic activity. Mater Sci Semicond Process 41:168–176CrossRefGoogle Scholar
  16. Hinojosa-Reyes M, Arriaga S, Diaz-Torres LA, Rodríguez-González V (2013) 7th European meeting on solar chemistry and photocatalysis: environmental applications (SPEA7). Chem Eng J 224:106–113CrossRefGoogle Scholar
  17. Joshi P, Zhou Z, Poudel P, Thapa A, Wu XF, Qiao Q (2012) Nickel incorporated carbon nanotube/nanofiber composites as counter electrodes for dye-sensitized solar cells. Nanoscale 4:5659–5664CrossRefGoogle Scholar
  18. Kaleji BK, Sarraf-Mamoory R, Fujishima A (2012) Influence of Nb dopant on the structural and optical properties of nanocrystalline TiO2 thin films. Mater Chem Phys 132:210–215CrossRefGoogle Scholar
  19. Kim CE, Moon P, Kim S, Myoung JM, Jang HW, Bang J (2010) Effect of carrier concentration on optical bandgap shift in ZnO:Ga thin films. Thin Solid Films 518:6304–6307CrossRefGoogle Scholar
  20. Kim DH, Lee S, Park JH, Noh JH, Park IJ, Seong WM, Kug Sun Hong (2012) Transmittance optimized nb-doped TiO2/Sn-doped In2O3 multilayered photoelectrodes for dye-sensitized solar cells. Sol Energy Mater Sol Cells 96:276–280CrossRefGoogle Scholar
  21. Kouhnavard M, Ludin NA, Ghaffari BV, Sopian K, Ikeda S (2015) Carbonaceous materials and their advances as a counter electrode in dye-sensitized solar cells: challenges and prospects. Chemsuschem 8:1510–1533CrossRefGoogle Scholar
  22. Lee C-H, Lu M-D, Guan Q-Z, Tung Y-L, Tsai S-Y, Lin F-M (2014) Thickness-controllable textured TiO2 underlayer for a flexible dye-sensitized solar cell sub-module. Mater Res Express 1(2):025503CrossRefGoogle Scholar
  23. Lee SH, Kwon J, Kim DY, Song K, Oh SH, Cho J, Fred SE, Jong HP, Kim JK (2015) Enhanced power conversion efficiency of dye-sensitized solar cells with multifunctional photoanodes based on a three-dimensional TiO2 nanohelix array. Sol Energy Mater Sol Cells 132:47–55CrossRefGoogle Scholar
  24. Liqiang J, Xiaojun S, Baifu X, Baiqi W, Weimin C, Honggang F (2004) The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity. J Solid State Chem 177:3375–3382CrossRefGoogle Scholar
  25. Lü X, Mou M, Wu J, Zhang D, Zhang L, Huang F, Xu F, Huang S (2010) Improved-performance dye-sensitized solar cells using Nb-doped TiO2 electrodes: efficient electron injection and transfer. Adv Funct Matter 20:509–515CrossRefGoogle Scholar
  26. Luna-Arredondo EJ, Maldonado A, Asomoza R, Acosta DR, Melendez-Lira MA, ML de la Olvera (2005) Indium-doped ZnO thin films deposited by the sol-gel technique. Thin Solid Films 490:132–136CrossRefGoogle Scholar
  27. Nagavolu C, Susmitha K, Raghavender M, Giribabu L, Rao KBS, Smith CTG, Mills CA, Silva SRP, Srikanth VVSS (2016) Pt-free spray coated reduced graphene oxide counter electrodes for dye sensitized solar cells. Sol Energy 137:143–147CrossRefGoogle Scholar
  28. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  29. Ohno T, Mitsui T, Matsumura M (2003) Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem Lett 4(32):364–365CrossRefGoogle Scholar
  30. Ohsaka T, Izumi F, Fujiki Y (1978) Raman spectrum of anatase TiO2. J Raman Spec 7:321CrossRefGoogle Scholar
  31. Pramod K, Singha K-W, Kima N-G, Park H-W Rheea (2008) Mesoporous nanocrystalline TiO2 electrode with ionic liquid-based solid polymer electrolyte for dye-sensitized solar cell application. Synth Met 158:590–593CrossRefGoogle Scholar
  32. Qiu X, Zhao Y, Burda C (2007) Synthesis and characterization of nitrogen-doped group IVB visible light photoactive metal oxide nanoparticle. Adv Mater 19:3995–3999CrossRefGoogle Scholar
  33. Rodríguez-González V, Moreno-Rodríguez A, May M, Tzompantzi F, Gómez R (2008a) Slurry photodegradation of 2,4-dichlorophenoxyacetic acid: a comparative study of impregnated and sol–gel In2O3–TiO2 mixed oxide catalysts. J Photochem Photobiol A 193:266–270CrossRefGoogle Scholar
  34. Rodríguez-González V, Paraguay-Delgado F, García-Montelongo X, Torres-Martínez LM, Gómez R (2008b) Effect of the In2O3 content on the photodegradation of the alizarin dye using TiO2–In2O3 nanostructured semiconductors. J Ceram Process Res 9:606–610Google Scholar
  35. Sainta Jostar T, Suganthi D, Suthagar J (2015) Effect of CdS layers on opto-electrical properties of chemically prepared ZnS/CdS/TiO2 photoanodes. Mater Sci Semicond Process 34:65–73CrossRefGoogle Scholar
  36. Sarkar MB, Mondal A, Choudhuri B, Mahajan BK, Chakrabartty S, Ngangbam C (2014) Enlarge broad band photodetection using indium doped TiO2 alloy thin film. J Alloys Compd 615:440–445CrossRefGoogle Scholar
  37. Sheehan S, Surolia PK, Byrne O, Garner S, Cimo P, Li X, Dowling DP, Thampi KR (2015) Flexible glass substrate-based dye sensitized solar cells”. Sol Energy Mater Sol Cells 132:237–244CrossRefGoogle Scholar
  38. Singhal RK, Samariya A, Kumar S, Xing YT, Jain DC, Dolia SN, Deshpande UP (2010) Study of defect induced ferromagnetism in hydrogenated anatase TiO2:Co. J Appl Phys 107:113916CrossRefGoogle Scholar
  39. Sivakumar R, Paulraj M (2016) Effect of TiO2 blocking layer on TiO2 nanorod arrays based dye sensitized solar cells. J Phys Conf Ser 720:012036CrossRefGoogle Scholar
  40. Skorb EV, Antonouskaya LI, Belyasova NA, Shchukin DG, Möhwald H, Sviridov DV (2008) Antibacterial activity of thin-film photocatalysts based on metalmodified TiO2 and TiO2:In2O3 nanocomposite. Appl Catal B 84:94–99CrossRefGoogle Scholar
  41. Stagi L, Carbonaro CM, Corpino R, Chiriu D, Ricci PC (2015) Optically controlled phase variation of TiO2 nanoparticles. Phys Status Solidi B 252:1124–1112CrossRefGoogle Scholar
  42. Stengl V, Oplustil F, Nemec T (2012) In3+ doped TiO2 and TiO2/In2S3 nanocomposite for photocatalytic stoichiometric degradation. Photochem Photobiol 88:265–276CrossRefGoogle Scholar
  43. Subrata Sarkera K-S, Leeb HW, Seoa Y-K, Jina DM, Kima (2017) Reduced graphene oxide for Pt-free counter electrodes of dye-sensitized solar cells. Sol Energy 158:42–48CrossRefGoogle Scholar
  44. Wang E, Yang W, Cao Y (2009) Unique surface chemical species on indium doped TiO2 and their effect on the visible light photocatalytic activity. J Phys Chem C 113:20912–20917CrossRefGoogle Scholar
  45. William B, White VG, Keramidas (1972) Vibrational spectra of oxides with the C-type rare earth oxide structure. Spectrochim Acta Part A 28:501–509CrossRefGoogle Scholar
  46. Xu X, Huang D, Cao K, Wang M, Zakeeruddin SM, Grätzel M (2013) Electrochemically reduced graphene oxide multilayer films as efficient counter electrode for dye-sensitized solar cells. Sci Rep 3:1489CrossRefGoogle Scholar
  47. Yang JH, Bark CW, Kim KH, Choi HW (2014) Effect of dye-sensitized solar cells based on the anodizing TiO2 nanotube array/nanoparticle double-layer electrode. ‎Jpn J Appl Phys 53(11S):11RB02CrossRefGoogle Scholar
  48. Yildirima OA, Arslan H, Sonmezoglu S (2016) Facile synthesis of cobalt-doped zinc oxide thin films for highly efficient visible light photocatalysts. Appl Surf Sci 390:111–121CrossRefGoogle Scholar
  49. Yu JC, Zhang L, Zheng Z, Zhao J (2003) Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chem Mater 15:2280–2286CrossRefGoogle Scholar
  50. Yu Y, Yu C, Yu JG (2005) Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl Catal A 2(289):186–196CrossRefGoogle Scholar
  51. Yu Q, Wang Y, Yi Z, Zu N, Zhang J, Zhang M, Wang P (2010) High-efficiency dye- sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states. ACS Nano 4:6032–6038CrossRefGoogle Scholar
  52. Yun S, Hagfeldt A, Ma T (2014) Pt-free counter electrode for dye-sensitized solar cells with high efficiency. Adv Mater 26(36):6210–6237CrossRefGoogle Scholar
  53. Zheng H, Neo CY, Mei X, Qiu J, Ouyang J (2012) Reduced graphene oxide films fabricated by gel coating and their application as platinum-free counter electrodes of highly efficient iodide/triiodide dye-sensitized solar cells. J Mater Chem 22:14465–14474CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsKarunya Institute of Technology and SciencesCoimbatoreIndia
  2. 2.Department of PhysicsHindustan Institute of Technology and ScienceChennaiIndia

Personalised recommendations