Applied Nanoscience

, Volume 8, Issue 3, pp 447–453 | Cite as

Coumarin–gold nanoparticle bioconjugates: preparation, antioxidant, and cytotoxic effects against MCF-7 breast cancer cells

  • Gokila Mahendran
  • Kumar PonnuchamyEmail author
Original Article


In recent, the conjugation of gold nanoparticles (AuNPs) with biomolecules has shown great potential especially in disease diagnostics and treatment. Taking this in account, we report the methodology involved in the conjugation of coumarin onto the surface of citrate-capped AuNPs by a simple in situ method. Herein, we systematically performed UV–Vis spectroscopy, transmission electron microscopy, dynamic light scattering, and zeta potential measurements to characterize citrate-capped AuNPs and bioconjugates. Our results demonstrate in-depth surface chemistry of bioconjugates with improved surface plasmon resonance (529 nm), morphology (near spherical shape), hydrodynamic diameter (25.3 nm) as well as surface charge (− 35 mV). Furthermore, the bioconjugates displayed dose-dependent response in scavenging free radicals and exhibited cytotoxicity against MCF-7 breast cancer cell lines. In addition, phase-contrast microscopic analysis revealed that bioconjugates promote apoptosis in cancer cells in a time-dependent manner. Overall, we ascertain the fact that this kind of bioconjugation of AuNPs with coumarin further enhances the efficacy of inorganic nanomaterials and thus make them a better bio-therapeutic candidate.


Gold nanoparticles Coumarin Bioconjugates Surface plasmon resonance Breast cancer Cytotoxicity Apoptosis 



Financial support from Early Career Research Award (ECR/2016/001456) from the Science Engineering and Research Board (SERB), New Delhi, India financially supported this work.


  1. Alea-Reyes A, González AC, Calpena D, Ramos-López JD, Lapuente L, Pérez-García (2017) Gemini pyridinium amphiphiles for the synthesis and stabilization of gold nanoparticles for drug delivery. J Colloid Interface Sci 502:172–183CrossRefGoogle Scholar
  2. Arvizo R, Bhattacharya R, Mukherjee P (2010) Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv 7:753–763CrossRefGoogle Scholar
  3. Ashat M, Goel N, Puri S, Pandey A, Singh A, Kaushal V (2014) Socio-demographic characteristics of cancer patients: Hospital based cancer registry in a tertiary care hospital of India. Indian J Cancer 51:1–4CrossRefGoogle Scholar
  4. Bantz C, Koshkina O, Lang T, Galla H-J, Kirkpatrick CJ, Stauber RH et al (2014) The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions. Beilstein J Nanotechnol 5:1774–1786CrossRefGoogle Scholar
  5. Bastus NG, Comenge J, Puntes V (2011) Kinetically controlled growth synthesis of citrate-stabilzed gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27:11098–11105Google Scholar
  6. Brigger ICA, Dubernet C, Couvreur P (2012) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 64:24–36CrossRefGoogle Scholar
  7. Conde JCA, Doria G, Baptista P (2012) Noble metal nanoparticles applications in cancer. J Drug Deliv 2012:1–12CrossRefGoogle Scholar
  8. Fisher B (1969) Systemic chemotherapy as an adjuvant to surgery in the treatment of breast cancer. Cancer 24:1286–1289CrossRefGoogle Scholar
  9. Gröber U (2009) Antioxidants and other micronutrients in complementary oncology. Breast Care 4:13–20CrossRefGoogle Scholar
  10. Häcker G (2000) The morphology of apoptosis. Cell Tissue Res 301:5–17CrossRefGoogle Scholar
  11. Haddada MB, Huebner M, Casale S, Knopp D, Niessner R, Salmain M, Boujday S (2016) Gold nanoparticles assembly on silicon and gold surfaces: mechanism, stability and efficiency in diclofenac biosensing. J Phys Chem C 120:29302–29311CrossRefGoogle Scholar
  12. Hindorff LA, Gillanders EM, Manolio TA (2011) Genetic architecture of cancer and other complex diseases: lessons learned and future directions. Carcinogenesis 32:945–954CrossRefGoogle Scholar
  13. Huang X, Wang J, Hao H, Wang Y, Ouyang J, Gao Y, Bao Y, Yin Q (2015) Determination and correlation of solubility and solution thermodynamics of coumarins in different pure solvents. Fluid Phase Equilib 394:148–155CrossRefGoogle Scholar
  14. Karthiga S, Kumar P (2018) Gold nanoparticles theathred cinnamic acids: preparation, characterization and cytotoxic effects on MCF-7 breast cancer cell lines. Appl Nanosci. Google Scholar
  15. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707CrossRefGoogle Scholar
  16. Kumar P, Senthamilselvi S, Govindaraju M (2014) Phloroglucinol-encapsulated starch biopolymer: preparation, antioxidant and cytotoxic effects on HepG2 liver cancer cell lines. RSC Adv 4:26787–26795CrossRefGoogle Scholar
  17. Lévy RCAB., Thanh NTK, Doty RC, Hussain I, Nichols RJ, Schiffrin DJ et al (2004) Rational and combinatorial design of peptide capping ligands for gold nanoparticles. J Am Chem Soc 126:10076–10084CrossRefGoogle Scholar
  18. Liang X-J, Chen C, Zhao Y, Wang PC (2010) Circumventing tumor resistance to chemotherapy by nanotechnology. In: Zhou J (eds) Multi-drug resistance in cancer. Methods in molecular biology (methods and protocols), vol 596. Humana Press, pp 467–488Google Scholar
  19. Lu Y, Li Y, Wu W (2016) Injected nanocrystals for targeted drug delivery. Acta Pharm Sin B 6:106–113CrossRefGoogle Scholar
  20. Luk BT, Zhang L (2014) Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS Appl Mater Interfaces 6:21859–21873CrossRefGoogle Scholar
  21. Mehtala JG, Wei A (2014) Nanometric resolution in the hydrodynamic size analysis of ligand-stabilzed gold nanorods. Langmuir 30:13737CrossRefGoogle Scholar
  22. Merza KS, Al-Attabi HD, Abbas ZM, Yusr HA (2012) Comparative study on method for preparation of gold nanoparticles. Green Sustain Chem 2:26–28CrossRefGoogle Scholar
  23. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefGoogle Scholar
  24. Musa M, Cooperwood J, Khan MO (2008) A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr Med Chem 15:2664–2679CrossRefGoogle Scholar
  25. Nayak D, Minz AP, Ashe S, Rauta PR, Kumari M, Chopra P et al (2016) Synergistic combination of antioxidants, silver nanoparticles and chitosan in a nanoparticle based formulation: characterization and cytotoxic effect on MCF-7 breast cancer cell lines. J Colloid Interface Sci 470:142–152CrossRefGoogle Scholar
  26. Nghiem THL, La TH, Vu XH, Chu VH, Nguyen TH, Le QH et al (2010) Synthesis, capping and binding of colloidal gold nanoparticles to proteins. Adv Nat Sci 1:025009Google Scholar
  27. Nicolardi S, Yuri EM, Van Der Burgt JDC, Codée M, Wuhrer CH, Hokke F, Chiodo (2017) Structural characterization of biofunctionalized gold nanoparticles by ultrahigh-resolution mass spectrometry. ACS Nano 11:8257–8264CrossRefGoogle Scholar
  28. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA: Cancer J Clin 55:74–108Google Scholar
  29. Perez-Cruz K, Moncada-Basualto M, Morales-Valenzeuella J, Barriga-Gonzalez G, Navarrete-Encina P, Nuriez-Vergara L, Squella JA, Olea-Azar C (2018) Synthesis and antioxidant study of new polyphenolic hybrid coumarins. Arab J Chem 11:525–537CrossRefGoogle Scholar
  30. Piella J, Bastús NG, Puntes V (2016) Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chem Mater 28:1066–1075CrossRefGoogle Scholar
  31. Quester K, Avalos-Borja M, Vilchis-Nestor AR, Camacho-López MA, Castro-Longoria E (2013) SERS properties of different sized and shaped gold nanoparticles biosynthesized under different environmental conditions by neurospora crassa extract. PLoS ONE 8:e77486CrossRefGoogle Scholar
  32. Qurieshi MA, Khan SMS, Masoodi MA, Qurieshi U, Ain Q, Jan Y et al (2016) Epidemiology of cancers in Kashmir, India: an analysis of hospital data. Adv Prev Med 2016:1–6CrossRefGoogle Scholar
  33. Razavi SM (2011) Plant coumarins as allelopathic agents. Int J Biol Chem 5:86–90CrossRefGoogle Scholar
  34. Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E et al (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113:1904–2074CrossRefGoogle Scholar
  35. Saraste A (2000) Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 45:528–537CrossRefGoogle Scholar
  36. Tai A, Ohno A, Ito H (2016) Isolation and characterization of the 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation-scavenging reaction products of arbutin. J Agric Food Chem 64:7285–7290CrossRefGoogle Scholar
  37. Thakur A, Singla R, Jaitak V (2015) Coumarins as anticancer agents: a review on synthetic strategies, mechanism of action and SAR studies. Eur J Med Chem 101:476–495CrossRefGoogle Scholar
  38. Tyagi H, Kushwaha A, Kumar A, Aslam M (2016) A facile pH controlled citrate-based reduction method for gold nanoparticles synthesis at room temperature. Nanoscale Res Lett 11:362CrossRefGoogle Scholar
  39. Venugopala KN, Rashmi V, Odhav B (2013) Review on natural coumarin lead compounds for their pharmacological activity. Biomed Res Int 2013:1–14CrossRefGoogle Scholar
  40. Wang C, Sun A, Qiao Y, Zhang P, Ma L, Su M (2015) Cationic surface modification of gold nanoparticles for enhanced cellular uptake and X-ray radiation therapy. J Mater Chem B 3:7372–7376CrossRefGoogle Scholar
  41. Zhang L, Xue H, Gao C, Carr L, Wang J, Chu B et al (2010) Imaging and cell targeting characteristics of magnetic nanoparticles modified by a functionalizable zwitterionic polymer with adhesive 3,4-dihydroxyphenyl-l-alanine linkages. Biomaterials 31:6582–6588CrossRefGoogle Scholar
  42. Zhang W, Zeng Z, Wei J (2017) Electrochemical study of DPPH radical scavenging for evaluating the antioxidant capacity of carbon nanodots. J Phys Chem C 121:18635–18642CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Food Chemistry and Molecular Cancer Biology Lab, Department of Animal Health and ManagementAlagappa UniversityKaraikudiIndia

Personalised recommendations