Advertisement

Reversible structural changes of in situ prepared As40Se60 nanolayers studied by XPS spectroscopy

  • Oleksandr B. Kondrat
  • R. M. Holomb
  • A. Csik
  • V. Takats
  • M. Veres
  • A. Feher
  • T. Duchon
  • K. Veltruska
  • M. Vondráček
  • N. Tsud
  • V. Matolin
  • K. C. Prince
  • V. M. Mitsa
Original Article
  • 85 Downloads

Abstract

As40Se60 nanolayers, as-deposited, annealed and in situ illuminated by green (532 nm) laser light, were studied using synchrotron radiation photoelectron spectroscopy. Changes in composition and local atomic coordination occurring in the irradiated region of As40Se60 films were monitored by analysis of As 3d and Se 3d core levels. It was found that the thermal treatment causes a decrease of the concentration of homopolar (As–As and Se–Se) bonds. On the other hand, an increasing concentration of both As-rich and Se-rich structural units (s.u.) with homopolar As–As and Se–Se bonds was observed under in situ green laser illumination of As40Se60 nanolayers. This process appeared to be reversible for a few sequences of annealing and illuminating of the sample. After a few cycles storing at ambient conditions the As40Se60 film composition was gradually changing, i.e. the aging effect was detected due to a drastic loss of As under ambient conditions. The surface local structure of the As40Se60 nanolayers and their photoinduced transformation are discussed in detail.

Keywords

As–Se nanolayers Photoinduced changes Synchrotron radiation photoelectron spectroscopy Core level Valence band Chalcogenide thin films 

Notes

Acknowledgments

OK, RH and VM gratefully acknowledge support from the Hungarian Academy of Sciences within the Domus Hungarica Scientiarum et Artium. CERIC-ERIC consortium and Czech Ministry of Education (LM2015057) are acknowledged for financial support. The work was carried out within the framework of the DB-884 Project of the Ministry of Education and Science of Ukraine. The publication contains the results of research conducted with the grant support of the State Fund for Fundamental Research under the Competitive Project 0117U006384. Authors are also acknowledging the GINOP-2.3.2-15-2016-00041 project, which is co-financed by the European Union and the European Regional Development Fund.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. Bahl MK, Woodall RO, Watson RL, Irgolic KJ (1976) Relaxation during photoemission and LMM Auger decay in arsenic and some of its compounds. J Chem Phys 64:1210–1218CrossRefGoogle Scholar
  2. Briggs D, Seah MP (1993) Practical surface analysis, vol 1, 2nd edn. Wiley, New YorkGoogle Scholar
  3. Choi DY, Madden S, Rode A, Wang R, Luther-Davies B (2007) Nanoscale phase separation in ultrafast pulsed laser deposited arsenic trisulfide (As2S3) films and its effect on plasma etching. J Appl Phys 102:083532–083535CrossRefGoogle Scholar
  4. Eisenberg NP, Manevich M, Klebanov M, Shutina S, Lyubin V (1995) Fabrication of microlens array for the IR by lithographic processes using an inorganic chalcogenide photoresist. Proc SPIE Int Soc Op Eng 2426:235–241Google Scholar
  5. Hammam M, Adriaenssens GJ, Grevendonk W (1985) Steady-state photoconductivity in amorphous arsenic selenide compounds. J Phys C Solid State Phys 18:2151–2160CrossRefGoogle Scholar
  6. Janai M, Rudman PS, Mandelbaum F (1978) Mass spectrometric analysis of arsenic trisulfide. J Non Cryst Solids 27:67–73CrossRefGoogle Scholar
  7. Kim HM, Jeong JW, Kwak CH, Lee SS (1995) Binary phase spatial modulation using photoinduced anisotropy in amorphous As2S3 thin films. Appl Opt 34:6008–6011CrossRefGoogle Scholar
  8. King DE, Fernandez JE, Swartz WE (1990) An XPS study of the doping of trans, trans-p-distyrylbenzene with AsF5: a model conducting polymer system. Appl Surf Sci 45:325–339CrossRefGoogle Scholar
  9. Kolobov AV, Tominaga J (2003) Chalcogenide glasses as prospective materials for optical memories and optical data storage. J Mater Sci Mater Electron 14:677–680CrossRefGoogle Scholar
  10. Kondrat O, Popovich N, Holomb R, Mitsa V, Lyamayev V, Tsud N, Cháb V, Matolín V, Prince KC (2012a) Laser induced changes of As50Se50 nanolayers studied by synchrotron radiation photoelectron spectroscopy. J Thin Solid Films 520:7224–7229CrossRefGoogle Scholar
  11. Kondrat O, Popovich N, Holomb R, Mitsa V, Lyamayev V, Tsud N, Cháb V, Matolín V, Prince KC (2012b) Synchrotron radiation photoelectron spectroscopy studies of self-organization in As40Se60 nanolayers stored under ambient conditions and after laser irradiation. J Non Cryst Solids 358:2910–2916CrossRefGoogle Scholar
  12. Kondrat O, Holomb R, Popovich N, Mitsa V, Veres M, Csik A, Feher A, Tsud N, Vondráček M, Matolín V, Prince KC (2015a) In situ investigations of laser and thermally modified As2S3 nanolayers: synchrotron radiation photoelectron spectroscopy and density functional theory calculations. J Appl Phys 118:225307CrossRefGoogle Scholar
  13. Kondrat O, Holomb R, Popovich N, Mitsa V, Veres M, Csik A, Tsud N, Matolín V, Prince KC (2015b) Local surface structure and structural properties of As–Se nanolayers studied by synchrotron radiation photoelectron spectroscopy and DFT calculations. J Non Cryst Solids 410:180–185CrossRefGoogle Scholar
  14. Kondrat O, Holomb R, Csik A, Takats V, Veres M, Mitsa V (2017a) Coherent light photo-modification, mass transport effect and surface relief formation in AsxS100−x nanolayers: absorption edge, XPS and Raman spectroscopy combined with profilometry study. Nanoscale Res Lett 12:149.  https://doi.org/10.1186/s11671-017-1918-y CrossRefGoogle Scholar
  15. Kondrat O, Holomb R, Mitsa V, Veres M, Tsud N (2017b) Structural investigation of As–Se chalcogenide thin films with different compositions: formation, characterization and peculiarities of volume and near-surface nanolayers. Funct Mater 24(4):547–554CrossRefGoogle Scholar
  16. Kovalskiy A, Neilson JR, Miller AC, Miller FC, Vlcek M, Jain H (2008) Comparative study of electron- and photo-induced structural transformations on the surface of As35S65 amorphous thin films. Thin Solid Films 516:7511–7518CrossRefGoogle Scholar
  17. Kovalskiy A, Vlcek M, Palka K, Buzek J, York-Winegar J, Oelgoetz J, Golovchak R, Shpotyuk O, Jain H (2017) Structural origin of surface transformations in arsenic sulfide thin films upon UV-irradiation. Appl Surf Sci 394:604–612CrossRefGoogle Scholar
  18. Krecmer P, Moulin AM, Stephenson RJ, Rayment T, Welland ME, Elliott SR (1997) Reversible nanocontraction and dilatation in a solid induced by polarized light. Science 277:1799–1802CrossRefGoogle Scholar
  19. Lyubin VM (1987) Photostructural changes in chalcogenide glasses. J Non Cryst Solids 97–98:47–54CrossRefGoogle Scholar
  20. Mott NF, Davis EA (1979) Electronic processes in non-crystalline materials. Clarendon Press, OxfordGoogle Scholar
  21. Petkov K, Krastev V, Ts Marinova (1994) XPS study of amorphous As2S3 films deposited onto chromium layers. Surf Interface Anal 22:202–205CrossRefGoogle Scholar
  22. Pfeiffer G, Paesler MA, Agarwal SG (1991) Reversible photodarkening of amorphous arsenic chalcogens. J Non Cryst Solids 130:111–143CrossRefGoogle Scholar
  23. Phillips JC (1981) Topology of covalent non-crystalline solids. 2. Medium-range order in chalcogenide alloys and a-Si(Ge). J Non Cryst Solids 43:37–77CrossRefGoogle Scholar
  24. Sanghera JS, Aggarwal ID (1997) Development of chalcogenide fiber optics at NRL. J Non Cryst Solids 213, 214:63–67CrossRefGoogle Scholar
  25. Sarode PR, Rao KJ, Hegd MS, Rao CNR (1979) Study of As2(Se, Te)3 glasses by X-ray absorption and photoelectron spectroscopy. J Phys C Solid State Phys 12:4119–4128CrossRefGoogle Scholar
  26. Shchurova TN, Savchenko ND, Kondrat AB, Opachko II (2006) Auger analysis and simulation of electronic states for Ge33As12Se55p-Si heterojunction. Surf Interface Anal 38(4):448–451CrossRefGoogle Scholar
  27. Shimakawa K, Kolobov A, Elliott SR (1995) Photoinduced effects and metastability in amorphous semiconductors and insulators. Adv Phys 44:475–588CrossRefGoogle Scholar
  28. Stronski A (1998) Production of metallica patterns with the help of high resolution inorganic resists. In: Harman G, Mach P (eds) Micrielectronic interconnections and assembly. NATO ASI series. 3: High technology. Kluwer Academic Publishers, Netherlands, pp 266–293Google Scholar
  29. Stronski AV, Vlcek M (2000) Imaging properties of As40S40Se20 layers. Optoelectron Rev 8(3):263–267Google Scholar
  30. Tanaka K (1990) Photoinduced structural changes in chalcogenide glasses. Rev Solid State Sci 4:641–659Google Scholar
  31. Ueno T (1983) Chemical shifts of photoelectron and auger lines in Ag- or Cu-doped amorphous GeSe2 and As2Se3. Jpn J Appl Phys 22:1469–1473CrossRefGoogle Scholar
  32. Ueno T, Odajima A (1981) X-ray photoelectron spectroscopy of Ag- and Cu-doped amorphous As2Se3. Jpn J Appl Phys 20:L501–L504CrossRefGoogle Scholar
  33. Wanger CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (1979) Handbook of X-ray photoelectron spectroscopy. Physical Electronics Division, Perkin-Elmer Corp, Eden PrairieGoogle Scholar
  34. Yeh JJ (1993) Atomic Calculation of photoionization cross-sections and asymmetry parameters. Gordon and Breach Science Publishers, Langhorne, PE (USA) and from Yeh JJ and Lindau I (1985) Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103. At Data Nucl Data Tables 32:1–155CrossRefGoogle Scholar
  35. Zakery A, Eliiott SR (2007) Optical nonlinearities in chalcogenide glasses and their applications. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Oleksandr B. Kondrat
    • 1
  • R. M. Holomb
    • 1
  • A. Csik
    • 2
  • V. Takats
    • 2
  • M. Veres
    • 3
  • A. Feher
    • 4
  • T. Duchon
    • 5
  • K. Veltruska
    • 5
  • M. Vondráček
    • 6
  • N. Tsud
    • 5
  • V. Matolin
    • 5
  • K. C. Prince
    • 7
  • V. M. Mitsa
    • 1
  1. 1.Uzhhorod National UniversityUzhhorodUkraine
  2. 2.Institute for Nuclear Research, Hungarian Academy of SciencesDebrecenHungary
  3. 3.Wigner Research Centre for PhysicsHungarian Academy of SciencesBudapestHungary
  4. 4.Pavol Jozef Šafárik University in KošiceKošiceSlovak Republic
  5. 5.Department of Surface and Plasma Science, Faculty of Mathematics and PhysicsCharles UniversityPrague 8Czech Republic
  6. 6.Institute of Physics, Academy of Science of the Czech RepublicPraha 8Czech Republic
  7. 7.Elettra-Sincrotrone Trieste S.C.p.ABasovizzaItaly

Personalised recommendations