Advertisement

Applied Nanoscience

, Volume 8, Issue 6, pp 1361–1378 | Cite as

Three-dimensional rotating flow of MHD single wall carbon nanotubes over a stretching sheet in presence of thermal radiation

  • Saleem Nasir
  • Saeed Islam
  • Taza Gul
  • Zahir Shah
  • Muhammad Altaf Khan
  • Waris Khan
  • Aurang Zeb Khan
  • Saima Khan
Original Article

Abstract

In this article the modeling and computations are exposed to introduce the new idea of MHD three-dimensional rotating flow of nanofluid through a stretching sheet. Single wall carbon nanotubes (SWCNTs) are utilized as a nano-sized materials while water is used as a base liquid. Single-wall carbon nanotubes (SWNTs) parade sole assets due to their rare structure. Such structure has significant optical and electronics features, wonderful strength and elasticity, and high thermal and chemical permanence. The heat exchange phenomena are deliberated subject to thermal radiation and moreover the impact of nanoparticles Brownian motion and thermophoresis are involved in the present investigation. For the nanofluid transport mechanism, we implemented the Xue model (Xue, Phys B Condens Matter 368:302–307, 2005). The governing nonlinear formulation based upon the law of conservation of mass, quantity of motion, thermal field and nanoparticles concentrations is first modeled and then solved by homotopy analysis method (HAM). Moreover, the graphical result has been exposed to investigate that in what manner the velocities, heat and nanomaterial concentration distributions effected through influential parameters. The mathematical facts of skin friction, Nusselt number and Sherwood number are presented through numerical data for SWCNTs.

Keywords

SWCNTs Stretching plate Thermal radiation Rotating system Nanofluid MHD HAM 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Aman S, Khan I, Ismail Z, Salleh MZ, Al-Mdallal QA (2017) Heat transfer enhancement in free convection flow of CNTs Maxwell nanofluids with four different types of molecular liquids. Sci Rep 7:1–13.  https://doi.org/10.1038/s41598-017-01358-3 CrossRefGoogle Scholar
  2. Chamkha AJ, Rashad AM (2012) Natural convection from a vertical permeable cone in a nanofluid saturated porous media for uniform heat and nanoparticles volume fraction fluxes. Int J Numer Methods Heat Fluid Flow 22:1073–1085.  https://doi.org/10.1108/09615531211271871 CrossRefGoogle Scholar
  3. Chen L, Xie H, Yu W, Li Y (2011) The Rheological behaviors of nanofluids containing multi-walled carbon nanotube. J Disp Sci Tech 32:550–554.  https://doi.org/10.1080/019326910033757223 CrossRefGoogle Scholar
  4. Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: The proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA (ASME, 1995) 231:99–105. http://www.osti.gov/servlets/purl/196525
  5. Crane LJ (1970) Flow past a stretching plate. Z Angew Math Phys 21:645–647.  https://doi.org/10.1007/BF01587695 CrossRefGoogle Scholar
  6. Davis R (1986) The effective thermal conductivity of a composite material with spherical inclusions. Int J Thermophys 7:609–620CrossRefGoogle Scholar
  7. Ding Y, Alias H, Wen D, Williams RA (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 49:240–250.  https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009 CrossRefGoogle Scholar
  8. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720.  https://doi.org/10.1063/1.1341218 CrossRefGoogle Scholar
  9. Ebaid A, Aly EH (2013) Exact analytical solution of the peristaltic nanofluids flow in an asymmetric channel with flexible walls and slip condition: application to the cancer treatment computational and mathematical methods in medicine. Comput Math Methods Med 10:1–8.  https://doi.org/10.1155/2013/825376 Google Scholar
  10. Hamad MAA (2011) Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field. Int Comm Heat Mass Transf 38:487–492.  https://doi.org/10.1016/j.icheatmasstransfer.2010.12.042 CrossRefGoogle Scholar
  11. Hammed H, Haneef M, Shah Z, Islam S, Khan W, Muhammad S (2018) The combined magneto hydrodynamic and electric field effect on an unsteady Maxwell nanofluid flow over a stretching surface under the influence of variable heat and thermal radiation. Appl Sci 8:160.  https://doi.org/10.3390/app8020160 CrossRefGoogle Scholar
  12. Haq RU, Rashid I, Khan ZH (2017) Effects of aligned magnetic field and CNTs in two different base fluids over a moving slip surface. J Mol Liq 243:682–688.  https://doi.org/10.1016/j.molliq.2017.08.084 CrossRefGoogle Scholar
  13. Hassani M, Tabar MM, Nemati H, Domairry G, Noori F (2011) An analytical solution for boundary layer flow of a nanoliquid past a stretching sheet. Int J Therm Sci 50:2256–2263.  https://doi.org/10.1016/j.ijthermalsci.2011.05.015 CrossRefGoogle Scholar
  14. Hayat T, Haider F, Muhammad T, Alsaedi A (2017a) Three-dimensional rotating flow of carbon nanotubes with Darcy-Forchheimer porous medium. PLoS One 12:1–18.  https://doi.org/10.1371/journal.pone.0179576 Google Scholar
  15. Hayat T, Muhammad T, Mustafa M, Alsaedi A (2017b) An optimal study for three-dimensional flow of Maxwell nanofluid subject to rotating frame. J Mol Liq 229:541–547.  https://doi.org/10.1016/j.molliq.2017.01.005 CrossRefGoogle Scholar
  16. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58.  https://doi.org/10.1038/354056a0 CrossRefGoogle Scholar
  17. Jaffery DJ (1973) Conduction through a random suspension of spheres. Proc Roy Soc Lond Ser A Math Phys Sci 335:335–336Google Scholar
  18. Javed T, Sajid M, Abbas Z, Ali N (2011) Non-similar solution for rotating flow over an exponentially stretching surface. Int J Num Methods Heat Fluid Flow 21:903–908.  https://doi.org/10.1108/09615531111162855 CrossRefGoogle Scholar
  19. Khan WA, Pop I (2010) Boundary-layer flow of a nanouid past a stretching sheet. Int J Heat Mass Transf 53:2477–2483.  https://doi.org/10.1063/1.4932627 CrossRefGoogle Scholar
  20. Khan WA, Khan ZA, Rahi M (2014) Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary. Appl Nano Sci 4:633–641.  https://doi.org/10.1007/s13204-013-0242-9 CrossRefGoogle Scholar
  21. Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf 46:3639–3653.  https://doi.org/10.1016/S0017-9310(03)00156-X CrossRefGoogle Scholar
  22. Li Q, Xuan Y (2002) Convective heat transfer and flow characteristics of Cu–water nanofluid. Sci China E 45:408–415.  https://doi.org/10.1360/02ye9047 Google Scholar
  23. Liao SJ (1992) The proposed homotopy analysis method for the solution of nonlinear problems, PhD Thesis, Shanghai Jiao Tong University, ShanghaiGoogle Scholar
  24. Liao SJ (2007) On the homotopy analysis method for nonlinear problems. Appl Math Comput 147:499–513.  https://doi.org/10.1016/S0096-3003(02)00790-7 Google Scholar
  25. Masuda H, Ebata A, Teramae K, Hishiunma N (1993) Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles. Netsu Bussei (Japan) 4:227–233.  https://doi.org/10.2963/jjtp.7.227 CrossRefGoogle Scholar
  26. Maxwell JC (1904) Electricity and magnetism, 3rd edn. Clarendon, OxfordGoogle Scholar
  27. Mekheimer KS, Elmaboud YA (2008) The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: application of an endoscope. Phys Lett A 372:1657–1665.  https://doi.org/10.1016/j.physleta.2007.10.028 CrossRefGoogle Scholar
  28. Narayana M, Sibanda P (2012) Laminar flow of a nanoliquid film over an unsteady stretching sheet. Int J Heat Mass Transf 55:7552–7560.  https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.054 CrossRefGoogle Scholar
  29. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170.  https://doi.org/10.1080/08916159808946559 CrossRefGoogle Scholar
  30. Ponmozhi J, Gonçalves FAMM, Feirrera AGM, Fonseca IMA, Kanagaraj S, Martins M, Oliveira MSA (2010) Thermodynamic and transport properties of CNT water based nanofluids. J Nano Res 11:101–106.  https://doi.org/10.4028/www.scientific.net/JNanoR.11.101 CrossRefGoogle Scholar
  31. Rosali H, Ishak A, Nazar R, Pop I (2015) Rotating flow over an exponentially shrinking sheet with suction. J Mol Liq 211:965–969.  https://doi.org/10.1016/j.molliq.2015.08.026 CrossRefGoogle Scholar
  32. Rosca NC, Pop I (2015) Unsteady boundary layer ow over a permeable curved stretching/shrinking surface. Eur J Mech B Fluids 51:61–67.  https://doi.org/10.1016/j.euromechflu.2015.01.001 CrossRefGoogle Scholar
  33. Sajid M, Ali N, Javed T, Abbas Z (2010) Stretching a curved surface in a viscous fluid. Chin Phys Lett 27:1–12.  https://doi.org/10.1088/0256-307X/27/2/024703 CrossRefGoogle Scholar
  34. Shah Z, Islam S, Gul T, Bonyah E, Khan MA (2018) The electrical MHD and hall current impact on micropolar nanofluid flow between rotating parallel plates. Results Phys.  https://doi.org/10.1016/j.rinp.2018.01.064 Google Scholar
  35. Takhar HS, Chamkha AJ, Nath G (2003) Flow and heat transfer on a stretching surface in a rotating fluid with a magnetic field. Int J Therm Sci 42:23–31.  https://doi.org/10.1016/S1290-0729(02)00004-2 CrossRefGoogle Scholar
  36. To CWS (2006) Bending and shear moduli of single–walled carbon nanotubes. Finite Elem Anal Des 42:404–413.  https://doi.org/10.1016/j.finel.2005.08.004 CrossRefGoogle Scholar
  37. Vajravelu K, Roper T (1999) Flow and heat transfer in a second grade fluid over a stretching sheet. Int J Non-Linear Mech 34:1031–1036.  https://doi.org/10.1016/S0020-7462(98)00073-0 CrossRefGoogle Scholar
  38. Vajravelua K, Kumar BVR (2004) Analytical and numerical solutions of a coupled non-linear system arising in a three-dimensional rotating flow. Int J Non-Linear Mech 39:13–24.  https://doi.org/10.1016/S0020-7462(02)00122-1 CrossRefGoogle Scholar
  39. Volder MFLD, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539.  https://doi.org/10.1126/science.1222453 CrossRefGoogle Scholar
  40. Williams W, Buongiorno J, Lin-Wen H (2008) Experimental investigation of the turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes. J Heat Transf 130:1–7.  https://doi.org/10.1115/1.2818775 CrossRefGoogle Scholar
  41. Xue Q (2005) Model for thermal conductivity of carbon nanotube-based composites. Phys B Condens Matter 368:302–307.  https://doi.org/10.1016/j.physb.2005.07.024 CrossRefGoogle Scholar
  42. Zaimi K, Ishak A, Pop I (2013) Stretching surface in rotating viscoelastic fluid. Appl Math Mech Engl Ed 34:945–952.  https://doi.org/10.1007/s10483-013-1719-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Saleem Nasir
    • 1
  • Saeed Islam
    • 1
  • Taza Gul
    • 2
  • Zahir Shah
    • 1
  • Muhammad Altaf Khan
    • 2
  • Waris Khan
    • 3
  • Aurang Zeb Khan
    • 4
  • Saima Khan
    • 4
  1. 1.Department of MathematicsAbdul Wali Khan UniversityMardanPakistan
  2. 2.Department of MathematicsCity University of Science and Information TechnologyPeshawarPakistan
  3. 3.Department of MathematicsIslamia College UniversityPeshawarPakistan
  4. 4.Department of PhysicsAbdul Wali Khan UniversityMardanPakistan

Personalised recommendations