Highly efficient photocatalytic conversion of solar energy to hydrogen by WO3/BiVO4 core–shell heterojunction nanorods

  • Sonya Kosar
  • Yuriy Pihosh
  • Raman Bekarevich
  • Kazutaka Mitsuishi
  • Kazuma Mawatari
  • Yutaka Kazoe
  • Takehiko Kitamori
  • Masahiro Tosa
  • Alexey B. Tarasov
  • Eugene A. Goodilin
  • Yaroslav M. Struk
  • Michio Kondo
  • Ivan Turkevych
Original Article
  • 10 Downloads

Abstract

Photocatalytic splitting of water under solar light has proved itself to be a promising approach toward the utilization of solar energy and the generation of environmentally friendly fuel in a form of hydrogen. In this work, we demonstrate highly efficient solar-to-hydrogen conversion efficiency of 7.7% by photovoltaic–photoelectrochemical (PV–PEC) device based on hybrid MAPbI3 perovskite PV cell and WO3/BiVO4 core–shell nanorods PEC cell tandem that utilizes spectral splitting approach. Although BiVO4 is characterized by intrinsically high recombination rate of photogenerated carriers, this is not an issue for WO3/BiVO4 core–shell nanorods, where highly conductive WO3 cores are combined with extremely thin absorber BiVO4 shell layer. Since the BiVO4 layer is thinner than the characteristic carrier diffusion length, the photogenerated charge carriers are separated at the WO3/BiVO4 heterojunction before their recombination. Also, such architecture provides sufficient optical thickness even for extremely thin BiVO4 layer due to efficient light trapping in the core–shell WO3/BiVO4 nanorods with high aspect ratio. We also demonstrate that the concept of fill factor can be used to compare I–V characteristics of different photoanodes regarding their optimization for PV/PEC tandem devices.

Keywords

Water splitting Photocatalysis Photoanode Core–shell heterojunction Nanorod Photocurrent 

Notes

Acknowledgements

I. T. and M. K. acknowledge support of the New Energy Development Organization of Japan. S. K., Y. P., K. M., Y. K., and T. K. acknowledge support of CREST (Core Research for Evolutional Science and Technology) of the Science and Technology Corporation (JST) of Japan. R. B. and K. M. acknowledge financial support from the research project “Advanced Low Carbon Technology Research and Development Program for Specially Promoted Research for Innovative Next Generation Batteries” of the Japan Science and Technology Agency (JST ALCA-SPRING) and from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) program for the Development of Environmental Technology using Nanotechnology. E. A. G. and A. B. T. acknowledge financial support from the Ministry of Education and Science of Russian Federation, Project Number: RFMEFI60716X0147 and JSC “Krasnoyarskaya HPP”.

References

  1. Abdi FF, van de Krol R (2012) Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes. J Phys Chem C 116(17):9398–9404CrossRefGoogle Scholar
  2. Abdi FF, Firet N, van de Krol R (2013a) Efficient BiVO4 thin film photoanodes modified with cobalt phosphate catalyst and W-doping. Chemcatchem 5(2):490–496CrossRefGoogle Scholar
  3. Abdi FF, Han L, Smets AH, Zeman M, Dam B, van de Krol R (2013b) Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat Commun 4:2195CrossRefGoogle Scholar
  4. Berglund SP, Flaherty DW, Hahn NT, Bard AJ, Mullins CB (2011) Photoelectrochemical oxidation of water using nanostructured BiVO4 films. J Phys Chem C 115(9):3794–3802CrossRefGoogle Scholar
  5. Chatchai P, Murakami Y, Kishioka S, Nosaka A, Nosaka Y (2008) FTO∕SnO2∕BiVO4 composite photoelectrode for water oxidation under visible light irradiation. Electrochem Solid State Lett 11(6):H160–H163CrossRefGoogle Scholar
  6. Chen L, Zhang Q, Huang R, Yin SF, Luo SL, Au CT (2012) Porous peanut-like Bi2O3 − BiVO4 composites with heterojunctions: one-step synthesis and their photocatalytic properties. Dalton Trans 41:9513–9518CrossRefGoogle Scholar
  7. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  8. Grigorieva AV, Tarasov AB, Goodilin EA, Volkov VV, Tretyakov YuD (2007) Synthesis, structure, and properties of vanadium pentoxide nanotubes. Glass Phys Chem 33(3):232–236CrossRefGoogle Scholar
  9. Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321(5892):1072–1075CrossRefGoogle Scholar
  10. Kim TW, Choi K-S (2014) Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343(6174):990–994CrossRefGoogle Scholar
  11. Kosar S, Pihosh Y, Turkevych I, Mawatari K, Uemura J, Kazoe Y, Makita K, Sugaya T, Matsui T, Fujita D, Tosa M, Struk YM, Kondo M, Kitamori T (2016) Tandem photovoltaic–photoelectrochemical GaAs/InGaAsP–WO3/BiVO4 device for solar hydrogen generation. Jpn J Appl Phys 55:04ES01–04ES06CrossRefGoogle Scholar
  12. Kudo A, Omori K, Kato H (1999) A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J Am Chem Soc 121(49):11459–11467CrossRefGoogle Scholar
  13. Li Y, Zhang L, Torres-Pardo A, Gonzalez-Calbet JM, Ma Y, Oleynikov P, Terasaki O, Asahina S, Shima M, Cha D, Zhao L, Takanabe K, Kubota J, Domen K (2013) Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. Nat Commun 4:2566Google Scholar
  14. Liang Y, Tsubota T, Mooij LPA, van de Krol R (2011) Highly improved quantum efficiencies for thin film BiVO4 photoanodes. J Phys Chem C 115(35):17594–17598CrossRefGoogle Scholar
  15. Luo W, Yang Z, Li Z, Zhang J, Liu J, Zhao Z, Wang Z, Yan S, Yu T, Zou Z (2011) Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy Environ Sci 4(10):4046–4051CrossRefGoogle Scholar
  16. Park Y, McDonald KJ, Choi K-S (2013) Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem Soc Rev 42(6):2321–2337CrossRefGoogle Scholar
  17. Pihosh Y, Turkevych I, Mawatari K, Asai T, Hisatomi T, Uemura J, Tosa M, Shimamura K, Kubota J, Domen K, Kitamori T (2014) Nanostructured WO3/BiVO4 photoanodes for efficient photoelectrochemical water splitting. Small 10(18):3692–3699CrossRefGoogle Scholar
  18. Pihosh Y, Turkevych I, Mawatari K, Uemura J, Kazoe Y, Kosar S, Makita K, Sugaya T, Matsui T, Fujita D, Tosa M, Kondo M, Kitamori T (2015) Photocatalytic generation of hydrogen by core–shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Sci Rep 5:11141CrossRefGoogle Scholar
  19. Pilli SK, Furtak TE, Brown LD, Deutsch TG, Turner JA, Herring AM (2011) Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation. Energy Environ Sci 4(12):5028–5034CrossRefGoogle Scholar
  20. Rao PM, Cai L, Liu C, Cho IS, Lee CH, Weisse JM, Yang P, Zheng X (2014) Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett 14:1099–1105CrossRefGoogle Scholar
  21. Resasco J, Zhang H, Kornienko N, Becknell N, Lee H, Guo J, Briseno AL, Yang P (2016) TiO2/BiVO4 nanowire heterostructure photoanodes based on type II band alignment. ACS Cent Sci 2:80–88CrossRefGoogle Scholar
  22. Saito R, Miseki Y, Sayama K (2012) Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte. Chem Commun 48(32):3833–3835CrossRefGoogle Scholar
  23. Sayama K, Nomura A, Arai T, Sugita T, Abe R, Yanagida M, Oi T, Iwasaki Y, Abe Y, Sugihara H (2006) Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment. J Phys Chem B 110(23):11352–11360CrossRefGoogle Scholar
  24. Seabold JA, Choi KS (2012) Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J Am Chem Soc 134(4):2186–2192CrossRefGoogle Scholar
  25. Su J, Zou XX, Li GD, Wei X, Yan C, Wang YN, Zhao J, Zhou LJ, Chen JS (2011) Macroporous V2O5–BiVO4 composites: effect of heterojunction on the behavior of photogenerated charges. J Phys Chem C 115:8064–8071CrossRefGoogle Scholar
  26. Turkevych I, Kosar S, Pihosh Y, Mawatari K, Kitamori T, Ye J, Shimamura K (2014) Synergistic effect between TiO2 and ubiquitous metal oxides on photocatalytic activity of composite nanostructures. J Ceram Soc Jpn 122:393–397CrossRefGoogle Scholar
  27. Ye H, Park HS, Bard AJ (2011) Screening of electrocatalysts for photoelectrochemical water oxidation on W-doped BiVO4 photocatalysts by scanning electrochemical microscopy. J Phys Chem C 115(25):12464–12470CrossRefGoogle Scholar
  28. Zhong DK, Choi S, Gamelin DR (2011) Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4. J Am Chem Soc 133(45):18370–18377CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sonya Kosar
    • 1
  • Yuriy Pihosh
    • 2
  • Raman Bekarevich
    • 3
  • Kazutaka Mitsuishi
    • 3
  • Kazuma Mawatari
    • 2
  • Yutaka Kazoe
    • 2
  • Takehiko Kitamori
    • 2
  • Masahiro Tosa
    • 3
  • Alexey B. Tarasov
    • 4
  • Eugene A. Goodilin
    • 5
  • Yaroslav M. Struk
    • 1
  • Michio Kondo
    • 6
  • Ivan Turkevych
    • 6
  1. 1.Institute of Physics, Engineering and Computer ScienceChernivtsi National UniversityChernivtsiUkraine
  2. 2.Department of Applied Chemistry, School of EngineeringThe University of TokyoTokyoJapan
  3. 3.Global Research Center for Environment and Energy Based on Nanomaterials Science (GREEN)National Institute for Materials ScienceTsukubaJapan
  4. 4.Laboratory of New Materials for Solar Energetics, Department of Materials ScienceLomonosov Moscow State University (MSU)MoscowRussia
  5. 5.Chemistry DepartmentLomonosov Moscow State University (MSU)MoscowRussia
  6. 6.National Institute of Advanced Industrial Science and TechnologyTsukubaJapan

Personalised recommendations