Highest recorded electrical conductivity and microstructure in polypropylene–carbon nanotubes composites and the effect of carbon nanofibers addition

  • C. A. Ramírez-Herrera
  • J. Pérez-González
  • O. Solorza-Feria
  • N. Romero-Partida
  • A. Flores-Vela
  • J. G. Cabañas-Moreno
Original Article
  • 8 Downloads

Abstract

In the last decade, numerous investigations have been devoted to the preparation of polypropylene–multiwalled carbon nanotubes (PP/MWCNT) nanocomposites having enhanced properties, and in particular, high electrical conductivities (> 1 S cm−1). The present work establishes that the highest electrical conductivity in PP/MWCNT nanocomposites is limited by the amount of nanofiller content which can be incorporated in the polymer matrix, namely, about 20 wt%. This concentration of MWCNT in PP leads to a maximum electrical conductivity slightly lower than 8 S cm−1, but only by assuring an adequate combination of dispersion and spatial distribution of the carbon nanotubes. The realization of such an optimal microstructure depends on the characteristics of the production process of the PP/MWCNT nanocomposites; in our experiments, involving composite fabrication by melt mixing and hot pressing, a second re-processing cycle is shown to increase the electrical conductivity values by up to two orders of magnitude, depending on the MWCNT content of the nanocomposite. A modest increase of the highest electrical conductivity obtained in nanocomposites with 21.5 wt% MWCNT content has been produced by the combined use of carbon nanofibers (CNF) and MWCNT, so that the total nanofiller content was increased to 30 wt% in the nanocomposite with PP—15 wt% MWCNT—15 wt%CNF.

Keywords

Polymer nanocomposites Carbon nanotubes Carbon nanofibers Polypropylene nanocomposites Electrical properties 

Notes

Acknowledgments

C. A. Ramírez-Herrera is grateful to Consejo Nacional de Ciencia y Tecnología (CONACYT) for a graduate fellowship with registry number 258940. The authors acknowledge the financial support provided by the 221795-SEP CONACYT project and Centro de Investigación y de Estudios Avanzados del I.P.N. (CINVESTAV-IPN). Centro de Nanociencias y Micro y Nanotecnologías del I.P.N. (CNMN-IPN), LANE-CINVESTAV, Indelpro S.A. de C.V., R. Gómez-Aguilar from ESFM-IPN, B. Zeifert from ESIQIE-IPN, J. L. Reyes-Rodríguez and Z. Rivera-Álvarez from CINVESTAV-IPN are recognized for the technical and experimental support provided in the realization of this research.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. Al-Saleh MH (2015) Electrically conductive carbon nanotube/polypropylene nanocomposite with improved mechanical properties. Mater Des 85:76–81.  https://doi.org/10.1016/j.matdes.2015.06.162 CrossRefGoogle Scholar
  2. Al-Saleh MH (2016) Carbon nanotube-filled polypropylene/polyethylene blends: compatibilization and electrical properties. Polym Bull 73(4):975–987.  https://doi.org/10.1007/s00289-015-1530-1 CrossRefGoogle Scholar
  3. Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47(1):2–22.  https://doi.org/10.1016/j.carbon.2008.09.039 CrossRefGoogle Scholar
  4. Bao Y, Xu L, Pang H, Yan D-X, Chen C, Zhang W-Q, Tang J-H, Li Z-M (2013) Preparation and properties of carbon black/polymer composites with segregated and double-percolated network structures. J Mater Sci 48(14):4892–4898.  https://doi.org/10.1007/s10853-013-7269-x CrossRefGoogle Scholar
  5. Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498.  https://doi.org/10.1016/j.compscitech.2008.06.018 CrossRefGoogle Scholar
  6. Bikiaris D (2010) Microstructure and properties of polypropylene/carbon nanotube nanocomposites. Materials 3(4):2884–2946.  https://doi.org/10.3390/ma3042884 CrossRefGoogle Scholar
  7. Cesano F, Zaccone M, Armentano I, Cravanzola S, Muscuso L, Torre L, Kenny JM, Monti M, Scarano D (2016) Relationship between morphology and electrical properties in PP/MWCNT composites: processing-induced anisotropic percolation threshold. Mater Chem Phys 180:284–290.  https://doi.org/10.1016/j.matchemphys.2016.06.009 CrossRefGoogle Scholar
  8. Chodák I, Omastová M, Pionteck J (2001) Relation between electrical and mechanical properties of conducting polymer composites. J Appl Polym Sci 82(8):1903–1906.  https://doi.org/10.1002/app.2035 CrossRefGoogle Scholar
  9. Das TK, Prusty S (2013) Graphene-based polymer composites and their applications. Polym Plast Technol Eng 52(4):319–331.  https://doi.org/10.1080/03602559.2012.751410 CrossRefGoogle Scholar
  10. Deng H, Zhang R, Bilotti E, Loos J, Peijs T (2009) Conductive polymer tape containing highly oriented carbon nanofillers. J Appl Polym Sci 113(2):742–751.  https://doi.org/10.1002/app.29624 CrossRefGoogle Scholar
  11. Garzón C, Palza H (2014) Electrical behavior of polypropylene composites melt mixed with carbon-based particles: effect of the kind of particle and annealing process. Compos Sci Technol 99:117–123.  https://doi.org/10.1016/j.compscitech.2014.05.018 CrossRefGoogle Scholar
  12. Ilčíková M, Danko M, Doroshenko M, Best A, Mrlík M, Csomorová K, Šlouf M, Chorvát D Jr, Koynov K, Mosnáčeka J (2016) Visualization of carbon nanotubes dispersion in composite by using confocal laser scanning microscopy. Eur Polym J 79:187–197.  https://doi.org/10.1016/j.eurpolymj.2016.02.015 CrossRefGoogle Scholar
  13. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43(16):6515–6530.  https://doi.org/10.1021/ma100572e CrossRefGoogle Scholar
  14. Kissel WJ, Han JH, Meyer JA (2003) Polypropylene: structure, properties, manufacturing processes and applications. In: Karian HG (ed) Handbook of polypropylene and polypropylene composites, 2nd edn. Marcel Dekker Inc., New York, pp 10–27Google Scholar
  15. Kurahatti RV, Surendranathan AO, Kori SA, Singh N, Kumar AVR, Srivastava S (2010) Defence applications of polymer nanocomposites. Def Sci J 60(5):551–563.  https://doi.org/10.14429/dsj.60.578 CrossRefGoogle Scholar
  16. Li J, Wong P-S, Kim J-K (2008) Hybrid nanocomposites containing carbon nanotubes and graphite nanoplatelets. Mater Sci Eng A 483–484:660–663.  https://doi.org/10.1016/j.msea.2006.08.145 CrossRefGoogle Scholar
  17. Li Y, Zhu J, Wei S, Ryu J, Wang Q, Sun L, Guo Z (2011) Poly(propylene) nanocomposites containing various carbon nanostructures. Macromol Chem Phys 212(22):2429–2438.  https://doi.org/10.1002/macp.201100364 CrossRefGoogle Scholar
  18. Lin J-H, Lin Z-I, Pan Y-J, Chen C-K, Huang C-L, Huang C-H, Lou C-W (2016) Improvement in mechanical properties and electromagnetic interference shielding effectiveness of PVA-based composites: synergistic effect between graphene nano-sheets and multi-walled carbon nanotubes. Macromol Mater Eng 301(2):199–211.  https://doi.org/10.1002/mame.201500314 CrossRefGoogle Scholar
  19. Liu T, Wang Y, Eyler A, Zhong W-H (2014) Synergistic effects of hybrid graphitic nanofillers on simultaneously enhanced wear and mechanical properties of polymer nanocomposites. Eur Polym J 55:210–221.  https://doi.org/10.1016/j.eurpolymj.2014.04.002 CrossRefGoogle Scholar
  20. Logakis E, Pollatos E, Pandis Ch, Peoglos V, Zuburtikudis I, Delides CG, Vatalis A, Gjoka M, Syskakis E, Viras K, Pissis P (2010) Structure-property relationships in isotactic polypropylene/multi-walled carbon nanotubes nanocomposites. Compos Sci Technol 70(2):328–335.  https://doi.org/10.1016/j.compscitech.2009.10.023 CrossRefGoogle Scholar
  21. Merzouki A, Haddaoui N (2012) Electrical conductivity modeling of polypropylene composites filled with carbon black and acetylene black. ISRN Polymer Sci 2012:1–7.  https://doi.org/10.5402/2012/493065 CrossRefGoogle Scholar
  22. Mičušík M, Omastová M, Krupa I, Prokeš J, Pissis P, Logakis E, Pandis C, Pötschke P, Pionteck J (2009) A comparative study on the electrical and mechanical behaviour of multi-walled carbon nanotube composites prepared by diluting a masterbatch with various types of polypropylenes. J Appl Polym Sci 113(4):2536–2551.  https://doi.org/10.1002/app.30418 CrossRefGoogle Scholar
  23. Müller K, Bugnicourt E, Latorre M, Jorda M, Echegoyen Sanz Y, Lagaron JM, Miesbauer O, Bianchin A, Hankin S, Bölz U, Pérez G, Jesdinszki M, Lindner M, Scheuerer Z, Castelló S, Schmid M (2017) Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials 7(4):74.  https://doi.org/10.3390/nano7040074 CrossRefGoogle Scholar
  24. Njuguna J, Pielichowski K, Fan J (2012) Polymer nanocomposites for aerospace applications. In: Gao F (ed) Advances in polymer nanocomposites: types and applications. Woodhead Publishing Limited, Cambridge, pp 472-539. 10.1533/9780857096241.3.472Google Scholar
  25. NOVA 2.1 version 2016.11.15, Metrohm Autolab B. V. (2016)http://www.ecochemie.nl/news/NOVA21.html
  26. Pan Y, Li L (2013) Percolation and gel-like behavior of multiwalled carbon nanotube/polypropylene composites influenced by nanotube aspect ratio. Polymer 54(3):1218–1226.  https://doi.org/10.1016/j.polymer.2012.12.058 CrossRefGoogle Scholar
  27. Pan Y, Li L, Chan SH, Zhao J (2010) Correlation between dispersion state and electrical conductivity of MWCNTs/PP composites prepared by melt blending. Compos A 41(3):419–426.  https://doi.org/10.1016/j.compositesa.2009.11.009 CrossRefGoogle Scholar
  28. Park SB, Lee MS, Park M (2014) Study on lowering the percolation threshold of carbon nanotube-filled conductive polypropylene composites. Carbon Lett 15(2):117–124.  https://doi.org/10.5714/CL.2014.15.2.117 CrossRefGoogle Scholar
  29. Reyes-Acosta MA, Torres-Huerta AM, Domínguez-Crespo MA, Flores-Vela AI, Dorantes-Rosales HJ, Ramírez-Meneses E (2015) Influence of ZrO2 nanoparticles and thermal treatment on the properties of PMMA/ZrO2 hybrid coatings. J Alloys Compd 643(S1):S150–S158.  https://doi.org/10.1016/j.jallcom.2014.10.040 CrossRefGoogle Scholar
  30. Schroder DK (2006) Semiconductor material and device characterization, 3rd edn. Wiley, New YorkGoogle Scholar
  31. Sharma SK, Gupta V, Tandon RP, Sachdev VK (2016) Synergic effect of graphene and MWCNT fillers on electromagnetic shielding properties of graphene-MWCNT/ABS nanocomposites. RSC Adv 6(22):18257–18265.  https://doi.org/10.1039/C5RA23418B CrossRefGoogle Scholar
  32. Shehzad K, Dang Z-M, Ahmad MN, Sagar RUR, Butt S, Farooq MU, Wang T-B (2013) Effects of carbon nanotubes aspect ratio on the qualitative and quantitative aspects of frequency response of electrical conductivity and dielectric permittivity in the carbon nanotube/polymer composites. Carbon 54:105–112.  https://doi.org/10.1016/j.carbon.2012.10.068 CrossRefGoogle Scholar
  33. Smith BE, Yazdani H, Hatami K (2015) Three-dimensional imaging and quantitative analysis of dispersion and mechanical failure in filled nanocomposites. Compos A 79:23–29.  https://doi.org/10.1016/j.compositesa.2015.08.019 CrossRefGoogle Scholar
  34. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401.  https://doi.org/10.1016/j.progpolymsci.2009.09.003 CrossRefGoogle Scholar
  35. Sun Y, Bao H-D, Guo Z-X, Yu J (2009) Modeling of the electrical percolation of mixed carbon fillers in polymer-based composites. Macromolecules 42(1):459–463.  https://doi.org/10.1021/ma8023188 CrossRefGoogle Scholar
  36. Tchmutin IA, Ponomarenko AT, Krinichnaya EP, Kozub GI, Efimov ON (2003) Electrical properties of composites based on conjugated polymers and conductive fillers. Carbon 41(7):1391–1395.  https://doi.org/10.1016/S0008-6223(03)00067-8 CrossRefGoogle Scholar
  37. Tibbetts GG, Lake ML, Strong KL, Rice BP (2007) A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos Sci Technol 67(7–8):1709–1718.  https://doi.org/10.1016/j.compscitech.2006.06.015 CrossRefGoogle Scholar
  38. Tjong SC, Liang GD, Bao SP (2007) Electrical behavior of polypropylene/multiwalled carbon nanotube nanocomposites with low percolation threshold. Scr Mater 57(6):461–464.  https://doi.org/10.1016/j.scriptamat.2007.05.035 CrossRefGoogle Scholar
  39. Verma P, Saini P, Choudhary V (2015) Designing of carbon nanotube/polymer composites using melt recirculation approach: effect of aspect ratio on mechanical, electrical and EMI shielding response. Mater Des 88:269–277.  https://doi.org/10.1016/j.matdes.2015.08.156 CrossRefGoogle Scholar
  40. Xin F, Li L (2012) The role of a silane coupling agent in carbon nanotube/polypropylene composites. J Compos Mater 46(26):3267–3275.  https://doi.org/10.1177/0021998312437235 CrossRefGoogle Scholar
  41. Yazdani H, Smith BE, Hatami K (2014) Multiscale 3D dispersion characterization of carbon nanotube filled polymer composites using microscopic imaging and data mining. In: Milne WI, Cole M (eds) Carbon nanotechnology, 1st edn. One Central Press (OCP), UK, pp 135–158Google Scholar
  42. Zhou Z, Wang S, Zhang Y, Zhang Y (2006) Effect of different carbon fillers on the properties of PP composites: comparison of carbon black with multiwalled carbon nanotubes. J Appl Polym Sci 102(5):4823–4837.  https://doi.org/10.1002/app.24722 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • C. A. Ramírez-Herrera
    • 1
  • J. Pérez-González
    • 2
  • O. Solorza-Feria
    • 3
  • N. Romero-Partida
    • 4
  • A. Flores-Vela
    • 5
  • J. G. Cabañas-Moreno
    • 1
  1. 1.Programa de Doctorado en Nanociencias y NanotecnologíaCINVESTAVCiudad de MéxicoMexico
  2. 2.Departamento de Física, Escuela Superior de Física y MatemáticasInstituto Politécnico NacionalCiudad de MéxicoMexico
  3. 3.Departamento de QuímicaCINVESTAVCiudad de MéxicoMexico
  4. 4.Industrias Romfer S.A. de C.V.Ciudad de MéxicoMexico
  5. 5.Centro Mexicano para la Producción más LimpiaInstituto Politécnico NacionalCiudad de MéxicoMexico

Personalised recommendations