Advertisement

Applied Nanoscience

, Volume 8, Issue 3, pp 455–465 | Cite as

Adsorption and possible dissociation of glucose by the [BN fullerene-B6] magnetic nanocomposite. In silico studies

  • E. Chigo Anota
  • M. Salazar Villanueva
  • E. Shakerzadeh
  • M. Castro
Original Article

Abstract

The adsorption, activation and possible dissociation of the glucose molecule on the magnetic [BN fullerene-B6] system is performed by means of density functional theory calculations. Three models of magnetic nanocomposites were inspected: i) pristine BN fullerene, BN fullerene functionalized with a magnetic B6 cluster which generates two structures: ii) pyramidal (P) and iii) triangular (T). Chemical interactions of glucose appear for all these cases; however, for the BNF:B6(T)—glucose system, the interaction generates an effect of dissociation on glucose, due to the magnetic effects, since it has high spin multiplicity. The latter nanocomposite shows electronic behavior like-conductor and like-semi-conductor for the P and T geometries, respectively. Intrinsic magnetism associated to values of 1.0 magneton bohr (µB) for the pyramidal and 5.0 µB for the triangular structure, high polarity, and low-chemical reactivity are found for these systems. These interesting properties make these functionalized fullerenes a good option for being used as nano-vehicles for drug delivery. These quantum descriptors remain invariant when the [BN]fullerene and [BNF:B6 (P) or (T)] nanocomposites are interacting with the glucose molecule. According to the determined adsorption energy, chemisorption regimes occur in both the phases: gas and aqueous medium.

Keywords

Magnetic BN Fullerene Magnetic B6 cluster Glucose DFT theory 

Notes

Acknowledgements

This work was partially supported by projects: VIEP-BUAP (CHAE-ING17-G) and Cuerpo Académico Ingeniería en Materiales (BUAP-CA-177). We thank the support given by the National Laboratory Supercomputing Southeast housed in the BUAP. M. Castro acknowledges financial support provided by DGAPA—UNAM, under Project PAPIIT IN-212315, and from Facultad de Química, under the PAIP—FQ program.

Supplementary material

13204_2018_664_MOESM1_ESM.docx (520 kb)
Supplementary material 1 (DOCX 520 kb)

References

  1. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170CrossRefGoogle Scholar
  2. Aihara J (1978) Three-dimensional aromaticity of polyhedral boranes. J Am Chem Soc 100:3339–3342CrossRefGoogle Scholar
  3. Bergveld P, Hendrikse J, Olthuis W (1998) Theory and application of the material work function for chemical sensors based on the field effect principle. Meas Sci Technol 9:1801–1808CrossRefGoogle Scholar
  4. Bonadonna RC, Bonora E, Del Prato S, Saccomani M, Cobelli C, Natali A, Frascerra S, Pecori N, Ferrannini E, Bier D, DeFronzo RA, Gulli G (1996) Roles of Glucose transport and glucose phosphorylation in muscle insulin of NIDMM. Diabetes 45:915–925CrossRefGoogle Scholar
  5. Cano Ordaz J, Chigo Anota E, Salazar Villanueva M, Castro M (2017) Possibility of a magnetic [BN fullerene:B6 cluster] nanocomposite as a vehicle for the delivery of dapsone. New J Chem 41: 8045–8052Google Scholar
  6. Chigo Anota E, Escobedo Morales A, Hernández Cocoletzi H, López López G (2015) Nitric oxide adsorption on non-stoichiometric boron nitride fullerene: Structural, stability, physicochemistry and drug delivery perspectives. Physica E 74:538–547CrossRefGoogle Scholar
  7. Chigo Anota E, Cortes Arriagada D, Bautista Hernández A, Castro M (2017a) In silico characterization of nitric oxide adsorption on a magnetic [B24N36 fullerene/(TiO2)2] – nanocomposite. Appl Surf Sci 400: 283–-292Google Scholar
  8. Chigo Anota E, Cárdenas-Jirón G, Salazar Villanueva M, Bautista Hernández A, Castro M (2017b) Covalent functionalization of octagraphene with magnetic octahedral B6 − and non-planar C6 – clusters. Physica E 94: 196–203Google Scholar
  9. Chigo Anota E, Salazar Villanueva M, Valdez S, Castro M (2017c) In silico studies of the magnetic octahedral B6− cluster—nitric oxide and [B6−–NO]−–O2 interactions. Struct Chem 28(6): 1757–1764Google Scholar
  10. Delley B (2006) The conductor-like screening model for polymers and surfaces. Mol Simul 32:117–123CrossRefGoogle Scholar
  11. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX an extended gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728CrossRefGoogle Scholar
  12. Encyclopedia of Food and Health. (2015) Academic Press. p. 239Google Scholar
  13. Feng S, Zhang H, Yan T, Hung D, Zhi C, Nakanishi H, Dong Gao X (2016) Int J Nanomed 11:4573–4582CrossRefGoogle Scholar
  14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr, JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene MK, nox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CTGoogle Scholar
  15. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional. Theory Chem Rev 103:1793–1874CrossRefGoogle Scholar
  16. Han W, Ma Z, Liu S, Ge C, Wang L, Zhang X (2007) Highly-dispersible boron nitride nanoparticles by spray drying and pyrolysis Ceramics Int 43(13):10192–10200Google Scholar
  17. Hao S, Zhou G, Duan W, Wu J, Gu BL (2006) Tremendous spin-splitting effects in open boron nitride nanotubes: application to nanoscale spintronic devices. J Am Chem Soc 128:8453–8458CrossRefGoogle Scholar
  18. Heyd J, Scuseria G (2004) Efficiente hybrid density functional calculations in solids: The HS-Ernzrhof screened Coulomb hybrid functional. J Chem Phys 121:1187–1192CrossRefGoogle Scholar
  19. Hosmane NS (2012) Boron science. New technologies and applications. CRC Press, Francis & Taylor Group, Boca RatonGoogle Scholar
  20. Kang HS (2006) Theoretical study of boron nitride nanotubes with defects in nitrogen-rich synthesis. J Phys Chem B 110:4621–4628CrossRefGoogle Scholar
  21. Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805CrossRefGoogle Scholar
  22. Koshland DE Jr (1992) The molecule of the year. Science 258:1861CrossRefGoogle Scholar
  23. Lee H, Choi TK, Lee YB, Cho HR, Ghaffari R, Wang L, Choi HJ, Chung TD, Lu N, Hyeon T, Choi SH, Kim DH (2016) A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nature Nanotechnol 11:566–572CrossRefGoogle Scholar
  24. Leung TC, Kao LC, Su WS, Feng YJ, Chan CT (2013) Relationship between surface dipole, work function and charge transfer: Some exceptions to an established rule. Phys Rev B 68:195408(1)–195408(6)Google Scholar
  25. Li X, Wang Zhang J, Hanagata N, Wang X, Weng Q, Ito A, Bando Y, Golberg D (2017) Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment. Nature Commun 8:13936(1)–13936(12)Google Scholar
  26. Lu H, Liu Z, Yan X, Li D, Parent L, Tian H (2016) Electron work function–a promising guiding parameter for material design. Sci Rep 6:24366(1)–24366(11)Google Scholar
  27. Mohadger Y, Roller MB, Gillham JK (1973) High-temperature elastomers: a systematic series of linear poly(carborane-siloxane)s containing icosahedral (CB10H10C) cages. III Spectroscopic identification. J Appl Polym Sci 17:2635–2652CrossRefGoogle Scholar
  28. Mukherjee S, Thilagar P (2016) Boron clusters in luminescent materials Boron clusters in luminescent materials. Chem Commun 52:1070CrossRefGoogle Scholar
  29. Scrocco E, Tomasi J (1973) The electrostatic molecular potential as a tool for the interpretation of molecular properties Top Current Chem 42:95–170Google Scholar
  30. Sukhorukova IV, Zhitnyak IY, Kovalskii AM, Matveev AT, Lebedev OI, Li X, Gloushankova NA, Golberg D, Shtansky DV (2015) Boron nitride nanoparticles with a petal-like surface as anticancer drug-delivery systems. ACS Appl Mater Interfaces 7:17217–17225CrossRefGoogle Scholar
  31. Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev 94:2027–2094CrossRefGoogle Scholar
  32. Tsuneda T (2014) Density functional theory in quantum chemistry. Springer, JapanCrossRefGoogle Scholar
  33. Weinhold F, Landis CR (2012) Discovering Chemistry with Natural Bond Orbitals, Wiley, HobokenGoogle Scholar
  34. Weng Q, Wang B, Wang X, Hanagata N, Li X, Liu D, Wang X, Jiang X, Bando Y, Golberg D (2014) Highly water-soluble, porous, and biocompatible boron nitride for anticancer drug delivery. ACS Nano 8(6):6123–6130CrossRefGoogle Scholar
  35. Wu J, Yin L (2011) Platinum Nanoparticle Modified Polyaniline-Functionalized Boron Nitride Nanotubes for Amperometric. Gluc. Enzym Biosensor ACS Appl Mater Interfaces 3(11):4354–4362CrossRefGoogle Scholar
  36. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-classfunctionals and 12 otherfunctionals. Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  37. Zhiani R (2017) Adsorption of various types of amino acids on the graphene and boron-nitride nanosheet, a DFT-D3 study. Appl Surf Sci 409:35–44CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad de Ingeniería QuímicaBenemérita Universidad Autónoma de Puebla, Ciudad UniversitariaPueblaMexico
  2. 2.Facultad de IngenieríaBenemérita Universidad Autónoma de PueblaPueblaMexico
  3. 3.Chemistry Department, Faculty of ScienceShahid Chamran University of AhvazAhvazIran
  4. 4.DEPg-Facultad de QuímicaUniversidad Nacional Autónoma de México-Departamento de Física y Química TeóricaMexico DFMexico

Personalised recommendations